
SQL SERVER – DESCRIPCIÓN DEL ENTORNO Y CREACIÓN DE BASES
DE DATOS...5

Introducción a SQL Server 2000 ...5

Ediciones e Instalación de SQL Server ...9
Ediciones SQL Server 2000..9
Instalación de SQL Server ..11

Alguna edición de Windows 2000 Server..11

Server y client tools..12
Pasos para la instalación sobre Windows NT Server..12
Verificar la instalación de SQL Server..22

Modos de autenticar las cuentas de los usuarios..26
INICIO DE SESIÓN...26

Para modificar la autenticación realice los siguientes pasos: ...26
Usuarios de Base de Datos ...30

Roles por Servidor ...32

Dbcreator ..32
Roles por Base de Datos ..33

BASES DE DATOS DE SQL SERVER...34

Objetos de una Base de Datos...34

Creación de Base de Datos..37
Páginas y extensiones ..38
Archivos y grupos de archivos físicos de la base de datos ...40
Archivos de Registro (LOG de Transacciones) ..41
Creación de Base de Datos ..42

Desde el Asistente ...42
Desde el Administrador Empresarial..48
Desde el Analizador de Consultas ..51
¿Quiénes pueden crear bases de datos? ..54
Ejemplos de creación de base de datos empleando el Analizador de Consultas54
Creando Múltiples Archivos ...57
Renombrando Base de Datos ..63

CREACIÓN DE TABLAS...65

Temas: ...65

Tipos de Datos de SQL Server 2000 ..66
Utilizar datos binarios ...66

Tipos de datos definidos por el usuario...70

Empleo de Comandos DDLL (Data Definition Language) ...73
Tablas del Sistema ..73

Tablas del Usuario ...73
Permanentes ..74
Temporales..74

Creación de tablas..74
Consideraciones al crear tablas...74
Modificación de la estructura de las tablas ..79
Valores autogenerados para las columnas..82

Propiedad Identity ..82
Función NEWID y Datos de tipo UNIQUEIDENTIFIER..83
Eliminación de tablas ...83

Implementar Restricciones ...85
Definir restrincción PRIMARY KEY ...87
Definir FOREIGN KEY Constraint ..89

Definir CHECK CONSTRAINT..90
Implementar DEFAULT CONSTRAINTS..91

DIAGRAMA DE BASE DE DATOS...94

RECUPERAR INFORMACIÓN..97

Objetivos:..97

Temas: ...97
Select ...97
Insert..105
Update ...105
Delete ..106

Recuperar información de dos o más tablas (Joins) ..107

Desencadenadores..110

Asignar Roles y/o Permisos – Comandos Dcl (Data Control Language) ..112

EJERCICIOS PROPUESTOS...118

IMPLEMENTAR VISTAS Y PROCEDIMIENTOS ALMACENADOS..............128

¿Qué es una vista?..128

Agregar, Modificar y Eliminar una Vista...130
Crear Vistas...130
Modificar Vistas..134
Eliminar Vistas..136

Procedimientos Almacenados...138
Crear, Modificar y Eliminar un Procedimiento Almacenado ..139

Crear Procedimientos Almacenados..139
Modificar Procedimientos Almacenados ..145
Eliminar Procedimientos Almacenados...146

Funciones en SQL Server 2000 (1/2) ...147
Tipos de funciones ..147

Funciones Escalares ...147
Funciones de tabla en línea..148
Las funciones de tabla de multi sentencias..148

Llamando Funciones...149
Limitaciones..149
Columnas computadas ..149

GLOSARIO ..151

REFERENCIA DEL TRANSACT-SQL ..153

TIPOS DE VALOR ...153
Utilizar datos char y varchar...153
Utilizar datos de fecha y hora ...154
Formato alfabético de las fechas ..155
Formato numérico de fecha ..156
Formato de cadena sin separar..157
Formatos de hora...157
Formato datetime de ODBC ...158
Utilizar datos enteros ..159
Utilizar datos decimal, float y real..159
Utilizar datos float y real ..160
Utilizar datos text e image ..160
Utilizar Constantes..161
Utilizar constantes en Transact-SQL..162

Funciones ..162
Utilizar funciones del sistema...164
Utilizar funciones de cadena...165
Utilizar SUBSTRING...166
Comparación de CHARINDEX y PATINDEX...166
Utilizar STR ..167
Utilizar STUFF ...168
Comparación de SOUNDEX y DIFFERENCE ...168
Utilizar las funciones text, ntext e image ...169
Utilizar funciones matemáticas ..170
Utilizar funciones trigonométricas ...171

ACOS y COS ...172
ASIN y SIN ..172
ATAN , ATN2, TAN y COT...172
DEGREES..172
RADIANS ..173
Comparación de CEILING y FLOOR...173
Comparación de LOG y LOG10..173

Utilizar las funciones exponenciales POWER y EXP ...173
Utilizar RAND ..173
Funciones de fecha..174

Utilizar GETDATE..174
Comparación de DATEPART y DATENAME ..175
Comparación de DATEADD y DATEDIFF ...175

Funciones que devuelven identificadores y nombres de usuarios ...176
Obtener identificadores o cuentas de inicio de sesión ...177
Obtener nombres de usuario de base de datos o identificadores de usuario..179
Funciones de conversión...180

El parámetro estilo ...183

Expresiones...183
Utilizar operadores en expresiones...184

Operadores aritméticos ..185
Operadores binarios ...186
Operadores de comparación...186
Operador de concatenación de cadenas ...188

Valores NULL...189

Miscelaneo...190
Utilizar comentarios..190

UPDATE Products ...192
Utilizar palabras clave reservadas ..192
Sinónimos..192

SQL Server – Descripción del Entorno y Creación de Bases de
Datos

Objetivos:

• Entender que es SQL Server
• Requisitos de Hardware y Software
• Seguridad
• Crear bases de datos

Temas:

• Introducción a SQL Server
• Ediciones de SQL Server
• Instalación de SQL Server
• Modos de autentificar las cuentas de los usuarios
• Bases de Datos de SQL Server
• Creación de Bases de Datos

Introducción a SQL Server 2000

SQL Server 2000 es un sistema de gestión de bases de datos relacionales (SGDBR o
RDBMS: Relational Database Management System) diseñado para trabajar con grandes
cantidades de información y la capacidad de cumplir con los requerimientos de proceso
de información para aplicaciones comerciales y sitios Web.

SQL Server 2000 ofrece el soporte de información para las tradicionales aplicaciones
Cliente/Servidor, las cuales están conformadas por una interfaz a través de la cual los
clientes acceden a los datos por medio de una LAN.

La hoy emergente plataforma NET exige un gran porcentaje de distribución de recursos,
desconexión a los servidores de datos y un entorno descentralizado, para ello sus
clientes deben ser livianos, tales como los navegadores de Internet los cuales accederán
a los datos por medio de servicios como el Internet Information Services(IIS).

SQL Server 2000 está diseñado para trabajar con dos tipos de bases de datos :

• OLTP (OnLine Transaction Processing) Son bases de datos caracterizadas
por mantener una gran cantidad de usuarios conectados concurrentemente
realizando ingreso y/o modificación de datos. Por ejemplo : entrada de pedidos
en línea, inventario, contabilidad o facturación.

• OLAP (OnLine Analytical Processing) Son bases de datos que almacenan
grandes cantidades de datos que sirven para la toma de decisiones, como por
ejemplo las aplicaciones de análisis de ventas.

SQL Server puede ejecutarse sobre redes basadas en Windows Server así como sistema
de base de datos de escritorio en máquinas Windows NT Workstation, Windows
Millenium y Windows 98.

Los entornos Cliente/Servidor, están implementados de tal forma que la información se
guarde de forma centralizada en un computador central (servidor), siendo el servidor
responsable del mantenimiento de la relación entre los datos, asegurarse del correcto
almacenamiento de los datos, establecer restricciones que controlen la integridad de
datos, etc.

Del lado cliente, este corre típicamente en distintas computadoras las cuales acceden al
servidor a través de una aplicación, para realizar la solicitud de datos los clientes
emplean el Structured Query Language (SQL), este lenguaje tiene un conjunto de
comandos que permiten especificar la información que se desea recuperar o modificar.

Existen muchas formas de organizar la información pero una de las formas más
efectivas de hacerlo está representada por las bases de datos relacionales, las cuales
están basadas en la aplicación de la teoría matemática de los conjuntos al problema de la
organización de los datos. En una base de datos relacional, los datos están organizados
en tablas (llamadas relaciones en la teoría relacional).

Una tabla representa una clase de objeto que tiene importancia para una organización.
Por ejemplo, se puede tener una base de datos con una tabla para empleados, otra para
clientes y otra para productos del almacén. Las tablas están compuestas de columnas y
filas (atributos y tuplas en la teoría relacional).

La tabla Empleados tendría columnas para el nombre, el apellido, código del
empleado, departamento, categoría laboral y cargo. Cada fila representa una instancia
del objeto representado por la tabla. Por ejemplo, una fila de la tabla Empleados
representa el empleado cuyo Id. de empleado es 12345.

Al organizar los datos en tablas, se pueden encontrar varias formas de definirlas. La
teoría de las bases de datos relacionales define un proceso, la normalización, que
asegura que el conjunto de tablas definido organizará los datos de manera eficaz.

SQL Server incluye un conjunto de herramientas que facilitan la instalación y
administración del servidor así como un conjunto de herramientas que facilitan el
diseño e implementación de base de datos, entre ellos podemos mencionar:

• SQL Server 2000 Database Engine, diseñado para almacenar detalladamente los

registros de las operaciones transaccionales (OLTP), este motor es responsable de
mantener la seguridad de los datos, proveer un adecuado nivel de tolerancia a
fallos, optimizar las consultas, emplear adecuadamente los bloqueos de recursos
para optimizar la concurrencia, etc.

• SQL Server 2000 Analysis Services, provee herramientas para consultar

información almacenada en data warehouses y data marts, como por ejemplo
cuando se desea obtener información totalizada acerca de los niveles de ventas
mensuales por regiones de ventas, etc.

Soporte para aplicaciones, SQL Server brinda a las aplicaciones clientes la posibilidad
de acceder a los datos a través de un lenguaje denominado Transact-SQL, asimismo es
importante mencionar que ahora existe un soporte para devolver la información en
formato XML.

Como soporte para las aplicaciones clientes tenemos:

1. SQL Distributed Management Objects (SQL-DMO) API que brinda un

conjunto de objetos COM que encapsulan toda la funcionalidad administrativa
del motor de datos.

2. Decision Support Objects (DSO) API que brinda un conjunto de objetos COM
que encapsulan las funcionalidades de los SQL Server 2000 Analysis Services.

3. Windows Management Instrumentation (WMI), es una API orientada a objetos
que permite administrar aplicaciones scripts para monitorear, configurar y
controlar los servicios, recursos y aplicaciones de Windows. SQL Server
ofrece una API que devuelve la información del motor de datos y de todas sus
instancias, esta API se denomina SQL Server 2000 WMI.

Entre los componentes adicionales de SQL Server 2000, podemos mencionar:

• Data Transformation Services, permite recuperar información de un origen de

datos, realizar transformaciones sencillas o complejas (como totalización de datos)
y almacenarlos en otro origen de datos, como una base de datos SQL o un cubo
multidimensional.

Replicación, se puede distribuir la información a través de un mecanismo de replicación
con la finalidad de optimizar el rendimiento o de mantener autonomía, mientras una
copia de la información almacenada en diferentes computadoras mantengan
sincronización.
• English Query, provee de un sistema que permite a los usuarios plantear una

pregunta en lenguaje natural en lugar de emplear un formato Transact-SQL. Por
ejemplo: “List all customers”, “How many blue dress were sold in 2001?”, etc.

Meta Data Services, son un conjunto de servicios que permiten almacenar información
acerca de las bases de datos y aplicaciones clientes que las emplean, esta información es
aprovechada cuando se requiere intercambiar con otras aplicaciones. Los Meta Data
Services proveen tres estándares: Meta Data Coalition Open Information Model (MDC
OIM), Interfaces COM y XML Encoding.
Además de ello cuenta con la documentación apropiada para poder obtener información
detallada de cada uno de los tópicos de SQL Server.

Componentes de SQL Server 2000

Ediciones e Instalación de SQL Server

Ediciones SQL Server 2000

SQL Server 2000 está disponible en seis diferentes versiones además en
cualquier edición se incluye el SQL Server 2000 Desktop Engine:

• Enterprise, soporta todas las características de SQL Server 2000. Esta edición

es para empresas que implementan medianas y grandes bases de datos, las cuales
brindan recursos a soluciones web, organizaciones con un alto índice de trabajo
transaccional, y soporte para data warehouse.

• Estándar, ideal para aplicaciones que necesiten brindar información a grupos de

trabajos o departamentos dentro de una organización.
Entre las características más saltantes que no se encuentran disponibles para
el motor relacional, podemos mencionar:

Clustering
Log Shipping
Vistas indexadas

Entre las características más destacadas que no se encuentran disponibles
para los servicios de análisis:

Definición de cubos particionados
Cubos OLAP enlazados
Soporte para dimensiones ROLAP
Celdas calculadas

Personal, soporta todas las características del SQL Server 2000 Standard Edition,
excepto la replicación transaccional, para lo cual sólo puede ser definido como un
suscriptor, además de esto tampoco se encuentra disponible el full text search cuando se
instala sobre Windows Me y Windows 98.
Esta edición puede ser empleada para aplicaciones standalone y usuarios móviles que
requieran un almacenamiento local de información.

• Windows CE Edition, es empleado para almacenar información en dispositivos

Windows CE. SQL Server 2000 CE es implementado como un conjunto de
librerías (DLLs) que operan como un OLE DB CE Provider. Está
implementación permite que SQL Server 2000 CE soportar ActiveX Data
Objects for Windows CE (ADOCE) y OLE DB CE APIs en Windows CE
versiones disponibles para Visual Basic y Visual C++. Además también es
posible que múltiples aplicaciones puedan compartir al mismo tiempo un
conjunto de DLLs.

Los dispositivos Windows CE pueden conectarse a la red empleando Remote
Data Access (RDA) característica de SQL Server CE para:

Conectarse a instancias de SQL Server de diferentes plataformas
Ejecutar sentencias SQL y colocarlas en un recordset
Modificar la información de un recordset y enviarlas a una instancia de SQL Server
inclusive de diferentes plataformas.
Ser suscriptor en una replicación de tipo merge.

• Developer Edition, soporta todas las características de SQL Server 2000,
además de un conjunto de herramientas gráficas para la configuración de
idiomas, esta es una edición sólo para desarrolladores que emplean SQL Server
como su origen de datos. Esta edición sólo esta licenciada para desarrollo y
prueba de los sistemas.

• Enterprise Evaluation Edition, soporta todas las características de SQL Server

2000, a excepción de las herramientas gráficas para configuración del lenguaje.
Esta edición es libre y se puede descargar desde el Web aunque sólo podrá
ejecutarla por 120 días.

• SQL Server 2000 Desktop Engine, es una versión distríbuible del motor de

base de datos relacional de SQL Server 2000. Esta edición es empleada para
aquellas aplicaciones que no requieran la implementación de tareas
administrativas para el cliente. Debe recordar que las bases de datos no deben
exceder los 2 Gb. de tamaño.

Instalación de SQL Server

Antes de instalar SQL Server 2000 es necesario conocer cuales son los requisitos
mínimos para instalar este producto, el siguiente cuadro muestra los requerimientos para
instalar SQL Server de acuerdo a la edición que Ud. emplee:

Recurso Requerimiento
Computador Intel o compatible
Procesador Pentium 166
Monitor 800*600
Dispositivo puntero Mouse
Tarjeta de red Opcional (requerido para acceso a los recursos de la

red)
CD-ROM Requerido para la instalación

Para determinar correctamente el requerimiento de memoria, emplear la siguiente tabla:

 Enterprise Estándar Evaluation Developer
Personal y
Desktop
Engine

Alguna
edición de
Windows 2000
Server

256 MB (128
MB

soportado)

256 MB (128
MB

soportado)

256 MB (128
MB

soportado)

256 MB (128
MB

soportado)

256 MB (128
MB

soportado)

Alguna edición
de Windows NT
4.0 Server con
SP5 o posterior

128 MB (64
MB

soportado)
64 MB

128 MB
recomendado

(64 MB
soportado)

64 MB 32 MB

Windows 2000
Professional N/A N/A

128 MB
recomendado

(64 MB
soportado)

64 MB 64 MB

Windows NT 4.0
Workstation, con
SP5 o posterior

N/A N/A

128 MB
recomendado

(64 MB
soportado)

64 MB 32 MB

Windows ME N/A N/A N/A N/A 32 MB
Windows 98 N/A N/A N/A N/A 32 MB

Como software tener en cuenta que para instalar SQL Server 2000 se requiere de
Internet Explorer 5.0 o posterior, si desea instalar SQL Server 2000 sobre Windows NT
en cualquiera de sus ediciones debe instalar previamente el Service Pack 5.0 o posterior.

Asimismo tenga en cuenta la siguiente tabla, para poder determinar el espacio en
disco requerido para su instalación:

Opción de Instalación

seleccionada Espacio en disco requerido

Server y client tools 95-270 MB dependiendo de las opciones seleccionadas

Instalación Typical 250 MB (178 MB para el sistema, más 72 MB para
programas y archivos de datos)

Instalación mínima 110 MB (73 MB para el sistema, más 37 MB para
programas y archivos de datos)

Herramientas
administrativas 113 MB (sistema solamente)

BoAceptars Online 30 MB (sistema solamente)
Analysis Services 47 MB mínimo 120 MB typical
English Query 80 MB
Sólo Desktop Engine 44 MB

Pasos para la instalación sobre Windows NT Server

Coloque el CD de instalación
Aparecerá la siguiente pantalla

Después se presentará la siguiente pantalla:

A continuación aparecerá una ventana que da la bienvenida al proceso de instalación,
pulse Siguiente (Siguiente)en la siguiente pantalla:

1. A continuación aparece una pantalla que le solicitará elegir entre una
instalación local o una instalación remota, pulse Siguiente (Siguiente) en la
siguiente pantalla:

Si es la primera vez que instala SQL Server 2000 aparecerá la siguiente pantalla:

2. Ingrese la información del usuario y pulse Siguiente (Siguiente).

Acepte las condiciones del licenciamiento:

Luego de aceptar las condiciones del licenciamiento aparecerá una caja de diálogo
solicitándole que seleccione uno de los tipos de instalación, para ello tendrá las
siguientes opciones:
Sólo Herramientas Cliente (Client Tools only), cuando requiera instalar herramientas
clientes para administrar un servidor SQL Server existente, así como también los
componentes de conectividad los libros en línea y opcionalmente los ejemplos.
Servidor y Herramientas Cliente (Server and Client Tools), selecciona esta opción
cuando requieras instalar un servidor SQL Server 2000, el cual deba contar con todas
las herramientas.
Sólo Conectividad (Connectivity Only), seleccione esta opción para instalar las librerías
de conectividad para los clientes.

Para cualquiera de las tres opciones se instalará previamente MDAC 2.6,
para la instalación que estamos realizando seleccione Servidor y
Herramientas Cliente (Server and Client Tools) y luego pulse Siguiente
(Siguiente):

A continuación aparecerá una caja de diálogo donde especificará el nombre de la
instancia que está instalando, si es la primera vez En forma predeterminada tomará el
nombre del equipo donde se encuentra instalando:

3. Luego de pulsar Siguiente (Siguiente), tendrá la posibilidad de seleccionar el

tipo de instalación a ejecutar, seleccione Personalizada (Custom) para que
pueda observar las diferentes opciones que configura el instalador, en esta
primera pantalla se muestran los espacios requeridos así como también las
carpetas donde se almacenaran las diferentes librerías de SQL Server:

4. Luego de pulsar Siguiente (Siguiente) aparecerá una lista que le permitirá
seleccionar los componentes a instalar, desplazar la lista Componentes
(Components) y activar las casillas Ejemplos de Código (Code Simples):

5. Inmediatamente se le solicitará una cuenta para los servicios, si se encuentra
trabajando en un entorno de red, asigne una cuenta de un usuario que
pertenezca al grupo Administradores (Administrators) del Dominio:

Seleccione el modo de autentificación para acceder a SQL Server 2000:

A continuación podrá determinar el conjunto de caracteres con los cuales trabajará,
asimismo podrá determinar si las consultas distinguirán o no las mayúsculas de las
minúsculas

Activar las librerías de red de acuerdo a los usuarios que tendrá su origen de datos:

6. Luego de pulsar Siguiente (Siguiente) aparecerá una pantalla indicándole que
se ha completado el trabajo de recolección de información, pulse Siguiente
(Siguiente) para iniciar el copiado de archivos:

7. Al completar la instalación se muestra la siguiente pantalla, pulse Finalizar
(Finish) para finalizar:

Verificar la instalación de SQL Server

Una vez finalizada la instalación debe revisar la instalación para cerciorarse
que el producto se ha instalado correctamente para ello puede mostrar el
Administrador de Servicios (Service Manager) que le permitirá mostrar el
estado de los servicios, este utilitario tiene el siguiente aspecto:

Seguidamente observará una caja de diálogo con el siguiente aspecto:

Otra de las formas de verificar el estado de la instalación es haciendo
pruebas con las sentencias a nivel del símbolo del sistema que ofrece SQL
Server como es el caso del utilitario OSQL, para comprobar su
funcionamiento abra una ventana del sistema y digite el siguiente comando:

C:\>osql –S<Susuariovidor> -U<usuario> –P<contraseña> –q "Select
CategoryName From Northwind..Categories" <pulse Enter>
Reemplace el texto en negrita por los valores adecuados.

El resultado será:

 CategoryName

 Beverages
 Condiments
 Confections
 Dairy Products
 Grains/Cereals
 Meat/Poultry
 Produce
 Seafood
(8 rows affected)
1> quit <pulse Enter>

Otra manera de poder verificar la instalación de SQL Server es revisar los
servicios que se cargan, para ello presione el botón del menú Inicio (Start),
seleccione Programas (Programs), Herramientas Administrativas (Administrative
Tools) y haga clic en Servicios (Services):

Compruebe que los siguientes servicios se encuentren iniciados:

MSSQL Server Este servicio es el motor de base de datos, este es el
componente que procesa todas las sentencias del Transact-SQL y administra
todos los archivos que comprometen las bases de datos del servidor, entre sus
principales funciones podemos mencionar:

• La asignación de recursos del servidor entre múltiples usuarios
concurrentes.

• Previene los problemas lógicos, como por ejemplo prevenir que los
usuarios modifiquen la misma información al mismo tiempo.

• Asegura la consistencia e integridad de datos.

SQL Server Agent Este servicio trabaja junto al MSSQL Server para crear y
administrar Alertas, Tareas (locales o multiserver) y Operadores. Entre sus
principales funciones podemos mencionar:

• Las alertas proveen información acerca del estado de un proceso, como
por ejemplo indicar cuando finalizo una tarea con éxito o fracaso.

• Este servicio incluye un motor que permite crear tareas y programarlos
para que se ejecuten automáticamente.

• Puede enviar correos electrónicos, puede indicar la ejecución de una
tarea cuando una alerta ocurre.

MS DTC Permite incluir múltiples orígenes de datos en una transacción, se
encarga de coordinar y asegurar que las actualizaciones sobre todos los
servidores sean permanentes, y si en caso estos cambios causaran un error
deshacer todos.

Microsoft Search Este es un servicio opcional y se encarga de realizar
búsquedas sobre información tipo carácter creando índices para facilitar estas
consultas.

Además de ello podrá ingresar a la consola de administración de SQL Server
denominada Administrador Corporativo (Administrador Empresarial), para ello
siga la siguiente secuencia:

A continuación tendrá la interfaz del Administrador Corporativo (Administrador
Empresarial), tal como lo muestra la siguiente representación:

Modos de autenticar las cuentas de los usuarios

SQL Server valida a los usuarios en dos niveles de seguridad: una a través de un Inicio
de sesión que establece el hecho de realizar la conexión a SQL Server y otro a partir de
la validación de los permisos que tienen los usuarios sobre una base de datos.

INICIO DE SESIÓN

Todos los usuarios deben tener un Inicio de sesión para poder conectarse a SQL Server,
para esto SQL Server reconoce 2 mecanismos de autentificación:
SQL Server es cuando el usuario debe proveer de un usuario y una contraseña que
serán validados por el propio SQL Server cuando el cliente intente conectarse.

Windows NT es cuando una cuenta o grupo de Windows NT controla el acceso a
SQL Server, el cliente no provee usuario y contraseña, ya que se empleará la cuenta
con la que se ingresa al sistema operativo.

Para modificar la autenticación realice los siguientes pasos:

1 Haga clic derecho sobre el servidor, en el menú contextual haga clic sobre la
opción Properties.

2 En la caja de diálogo haga clic sobre la ficha Seguridad, se presentará la

siguiente pantalla:

Seleccione la opción “SQL Server y Windows” cuando desee brindar servicios de
información a terceros por ejemplo a usuarios de internet. Seleccione “Sólo Windows”
cuando los datos estarán disponibles sólo a los empleados de la organización. En
cualquiera de los dos casos debe pulsar Aceptar, espere por un instante mientras SQL
Server 2000 detiene los servicios y los vuelve a iniciar para hacer efectivos los cambios.

Hecho esto Ud. podrá definir sus Inicios de sesión de acceso a SQL Server, para ello
realice la siguiente secuencia desde el Administrador Empresarial:

Expanda la carpeta Seguridad del Administrador Empresarial y haga clic derecho sobre
Inicios de sesión

Aparecerá la siguiente caja de diálogo:

En la ficha Acceso a base de datos podrá especificar que el Inicio de sesión se definirá
como usuario de alguna de las bases de datos existentes. Pulse Aceptar al finalizar.

La creación de Inicios de sesión también es posible desde el Analizador de Consultas,
que es una herramienta a la cual accesamos a partir de la siguiente secuencia:

Observará el siguiente entorno:

Ahora que conocemos el entorno podemos digitar las siguientes sentencias para poder
crear un nuevo Inicio de sesión:

/* Activar Base de datos */
Use Master
GO
/* Crear nuevos login */
Sp_Addlogin ‘mhidalgo’, ‘mhidalgo’
GO
Sp_Addlogin ‘Usuario01’, ‘contraseña’
GO
/* Comprobar la creación del nuevo login */
Select Name From Syslogins
GO

NOTA: Se pueden colocar comentarios empleando (--) al final de una sentencia,
pero si desea tener un grupo de filas comentadas emplee los delimitadores (/*
..... */)

Usuarios de Base de Datos

Una de las tareas comunes al administrar SQL Server es permitir el acceso a bases de
datos y la asignación de permisos o restricciones sobre los objetos que conforman una
base de datos.

SQL Server 2000 permite trabajar a nivel de Roles y Usuarios.

Un rol es un conjunto de derechos asignados, los cuales se convierten en una gran
alternativa para agrupar un conjunto de permisos, de tal forma que cuando se incorpore
un nuevo usuario a la base de datos, ya no se le tiene que dar permiso por permiso por
cada uno de los objetos que requiera emplear, sino mas bien su cuenta de usuario es
agregada al rol, y si al rol tiene que asignársele acceso sobre un nuevo elemento
automáticamente el permiso o la restricción afectará a los usuarios que pertenezcan a un
rol.

Los usuarios representan los usuarios que tienen acceso a la base de datos y están
mapeados a un Inicio de sesión, aunque pueden tener diferente identificador, por
ejemplo el Inicio de sesión puede tener como nombre Jcabrera pero al definir un
Usuario podemos usar Jorge.

Después de que se crearon los Inicios de sesión para conectarse a SQL Server, se deben
definir los accesos a las bases de datos requeridas, para ello es necesario definir
Usuarios en cada BD, estos usuarios permitirán controlar el acceso a los distintos
objetos incluyendo los datos que estos contienen.

Para ello realice el siguiente proceso:

Expanda la base de datos donde desea definir al nuevo usuario y haga clic derecho sobre
la carpeta Usuarios

Seleccione un Inicio de sesión de la lista y pulse Aceptar.

También es posible realizar esta tarea desde el Analizador de Consultas para ello
emplee la siguiente secuencia de instrucciones:

Use Northwind
GO
Sp_GrantDBAccess ‘Usuario01’
GO

Además de los Inicios de sesión y usuarios SQL Server brinda un conjunto de roles por
servidor y por base de datos que son derechos predefinidos que podrán especificarse por
cada usuario de ser necesario. También es posible crear roles personalizados.
Los roles son los siguientes:

Roles por Servidor

Rol Descripción

Dbcreator
Crea y modifica bases de datos.

Diskadmin Administra los archivos de datos.
Processadmin Administra los procesos de SQL Server.
SecurityAdmin Administra los Inicios de sesión.
Serveradmin Opciones de configuración del servidor.
Setupadmin Instala la replicación.
Sysadmin Realiza cualquier actividad.

Roles por Base de Datos
Rol Descripción

public Mantiene los permisos En forma
predeterminada para todos los usuarios.

db_owner Realiza cualquier actividad en la BD
db_accessadmin Agrega o retira usuarios y/o roles
db_ddladmin Agrega, modifica o elimina objetos
db_SecurityAdmin Asigna permisos sobre objetos o sobre

sentencias
db_backupoperator Backup y Restore de la base de datos
db_datareader Lee información desde cualquier tabla
db_datawriter Agrega, modifica o elimina datos
db_denydatareader No puede leer la información
db_denydatawriter No puede modificar la información

Bases de Datos de SQL Server

SQL Server soporta bases de datos del sistema y bases de datos del usuario.
Las bases de datos del sistema, almacenan información que permite operar y administrar
el sistema, mientras que las de usuario almacenan los datos requeridos por las
operaciones del cliente.

Las bases de datos del sistema son:

• master

La base de datos master se compone de las tablas de sistema que realizan el
seguimiento de la instalación del servidor y de todas las bases de datos que se
creen posteriormente. Asimismo controla las asignaciones de archivos, los
parámetros de configuración que afectan al sistema, las cuentas de inicio de
sesión. Esta base de datos es crítica para el sistema, así que es bueno tener
siempre una copia de seguridad actualizada.

• tempdb
Es una base de datos temporal, fundamentalmente un espacio de trabajo, es
diferente a las demás bases de datos, puesto que se regenera cada vez que
arranca SQL Server. Se emplea para las tablas temporales creadas explícitamente
por los usuarios, para las tablas de trabajo intermedias de SQL Server durante el
procesamiento y la ordenación de las consultas.

• model
Se utiliza como plantilla para todas las bases de datos creadas en un sistema.
Cuando se emite una instrucción CREATE DATABASE, la primera parte de la base
de datos se crea copiando el contenido de la base de datos model, el resto de la
nueva base de datos se llena con páginas vacías.

• msdb
Es empleada por el servicio SQL Server Agent para guardar información con
respecto a tareas de automatización como por ejemplo copias de seguridad y
tareas de duplicación, asimismo solución a problemas.
La información contenida en las tablas que contiene esta base de datos, es
fácilmente accedida desde el Administrador Empresarial, así que se debe tener
cuidado de modificar esta información directamente a menos que se conozca muy
bien lo que se esta haciendo.

• Distribution
Almacena toda la información referente a la distribución de datos basada en un
proceso de replicación.

Objetos de una Base de Datos

Las Tablas son objetos de la base de datos que contienen la información de los
usuarios, estos datos están organizados en filas y columnas, similar al de una hoja de
cálculo. Cada columna representa un dato aislado y en bruto que por sí solo no brinda
información, por lo tanto estas columnas se deben agrupar y formar una fila para
obtener conocimiento acerca del objeto tratado en la tabla. Por ejemplo, puede definir
una tabla que contenga los datos de los productos ofertados por una tienda, cada
producto estaría representado por una fila mientras que las columnas podrían identificar
los detalles como el código del producto, la descripción, el precio, las unidades en
stock, etc.

Una Vista es un objeto definido por una consulta. Similar a tabla, la vista muestra un
conjunto de columnas y filas de datos con un nombre, sin embargo, en la vista no
existen datos, estos son obtenidos desde las tablas subyacentes a la consulta. De esta
forma si la información cambia en las tablas, estos cambios también serán observados
desde la vista. Fundamental emplean para mostrar la información relevante para el
usuario y ocultar la complejidad de las consultas.

Los tipos de datos especifican que tipo de valores son permitidos en cada una de las
columnas que conforman la estructura de la fila. Por ejemplo, si desea almacenar
precios de productos en una columna debería especificar que el tipo de datos sea
money, si desea almacenar nombres debe escoger un tipo de dato que permita
almacenar información de tipo carácter.
SQL Server nos ofrece un conjunto de tipos de datos predefinidos, pero también existe
la posibilidad de definir tipos de datos de usuario.

Un Procedimiento Almacenado es una serie de instrucciones SQL precompiladas las
cuales organizadas lógicamente permiten llevar a cabo una operación transaccional o de

control. Un Procedimiento almacenado siempre se ejecuta en el lado del Servidor y no
en la máquina Cliente desde la cual se hace el requerimiento. Para ejecutarlos deben ser
invocados explícitamente por los usuarios.

Un Desencadenador es un Procedimiento Almacenado especial el cual se invoca
automáticamente ante una operación de Insert, Update o Delete sobre una tabla. Un
Desencadenador puede consultar otras tablas y puede incluir complejas instrucciones
SQL, se emplean para mantener la integridad referencial, preservando las relaciones
definidas entre las tablas cuando se ingresa o borra registros de aquellas tablas.

Los Valores Predeterminados especifican el valor que SQL Server insertará en una
columna cuando el usuario no ingresa un dato específico. Por ejemplo, si se desconoce
el apellido materno de un empleado SQL Server podría incluir automáticamente la
cadena NN para identificar este campo.

Las Reglas son objetos que especifican los valores aceptables que pueden ser
ingresados dentro de una columna particular. Las Reglas son asociadas a una columna o
a un tipo de dato definido por el usuario. Una columna o un Tipo de dato puede tener
solamente una Regla asociada con el.

Las Restricciones son restricciones que se asignan a las columnas de una tabla y son
controladas automáticamente por SQL Server.
Esto nos provee las siguientes ventajas:

• Se puede asociar múltiples constraints a una columna, y también se puede asociar

un constraints a múltiples columnas.
• Se pueden crear los Restricciones al momento de crear la tabla CREATE TABLE.

Los Restricciones conforman el standars ANSI para la creación y alteración de
tablas, estos no son extensiones del Transact SQL.

Se puede usar un constraints para forzar la integridad referencial, el cual es el proceso
de mantener relaciones definidas entre tablas cuando se ingresa o elimina registros en
aquellas tablas.

Los índices de SQL Server son similares a los índices de un libro que nos permiten
llegar rápidamente a las páginas deseadas sin necesidad de pasar hoja por hoja, de forma
similar los índices de una tabla nos permitirán buscar información rápidamente sin
necesidad de recorrer registro por registro por toda la tabla. Un índice contiene valores y
punteros a las filas donde estos valores se encuentran.

Creación de Base de Datos

En términos sencillos una base de datos de SQL Server es una colección de objetos que
contiene y administra datos. Antes de crear una base de datos es importante entender
como es que SQL Server almacena la información.

Páginas y extensiones

Antes de crear una base de datos con SQL Server 2000, debemos tomar en cuenta que la
unidad básica de almacenamiento en SQL Server es la página(data page), el tamaño de
cada pade es de 8 KB, lo cual representa un total de 128 páginas por cada megabyte.

El comienzo de cada página es una cabecera de 96 bytes que se utiliza para almacenar
información de cabecera tal como el tipo de página, la cantidad de espacio libre de la
página y el Id. del objeto propietario de la página.
Existen ocho tipos de páginas en los archivos de datos de una base de datos SQL Server
2000.

Tipo de página Contenido

Datos Filas con todos los datos excepto los de tipo text,
ntext e image.

Índice Entradas de índices
Texto o imagen Datos de tipo text, ntext e image.
Mapa de asignación global/
Mapa de asignación global
Secundario

Información acerca de las extensiones asignadas.

Espacio libre en la página Información acerca del espacio libre disponible en
las páginas.

Mapa de asignación de
índices.

Información acerca de las extensiones utilizadas
por una tabla o un índice

Bulk Changed Map Información de los extends modificados por
operación bulk desde el último backup del log.

Differential Changed Map Información de los extends modificados desde el
último full database backup.

Los archivos de registro (LOG) no contienen páginas, contienen series de registros.

Las páginas de datos contienen todos los datos de las filas de datos excepto los datos
text, ntext e image, que están almacenados en páginas separadas. Las filas de datos se
colocan en las páginas una a continuación de otra, empezando inmediatamente después
de la cabecera, al final de cada página se encuentra una tabla de posiciones de filas que
contiene una entrada por cada fila de la página y cada entrada registra la posición, desde
el principio de la página, del primer byte de la fila. Las entradas de la tabla de
posiciones de filas están en orden inverso a la secuencia de las filas de la página.

En SQL Server, las filas no pueden continuar en otras páginas.

Las extensiones son la unidad básica de asignación de espacio a las tablas e índices.
Consta de 8 páginas contiguas, es decir 64 KB. Lo cual representa 16 extensiones por
MB.
Para hacer que la asignación de espacio sea eficiente, SQL Server 2000 no asigna
extensiones enteras a tablas con poca cantidad de datos. SQL Server 2000 tiene dos
tipos de extensiones:

• Las extensiones uniformes son propiedad de un único objeto; sólo el objeto

propietario puede utilizar las ocho páginas de la extensión.
• Extensiones mixtas, pueden estar compartidas por hasta ocho objetos.

Las tablas o índices nuevos son asignados a páginas de extensiones mixtas. Cuando
la tabla o el índice crecen hasta el punto de ocupar ocho páginas, se pasan a
extensiones uniformes.

Archivos y grupos de archivos físicos de la base de datos

Un archivo de base de datos no es mas que un archivo del sistema operativo. Una base
de datos se distribuye en por lo menos dos archivos, aunque es muy probable que sean
varios los archivos de base de datos que se especifican al crear o al modificar una base
de datos.
Principalmente SQL Server divide su trabajo en un archivo para datos y otro para el
registro de las transacciones (log).

SQL Server 2000 permite los tres siguientes tipos de archivos:

• Archivos de datos primarios

Toda base de datos tiene un archivo de datos primario que realiza el seguimiento
de todos los demás archivos, además de almacenar datos. Por convenio este
archivo tiene la extensión MDF.

• Archivos de datos secundarios
Una base de datos puede tener cero o varios archivos de datos secundarios. Por
convenio la extensión recomendada para los archivos de datos secundarios es
NDF.

• Archivos de registro (LOG)

Todas las bases de datos por lo menos tendrán un archivo de registro que
contiene la información necesaria para recuperar todas las transacciones que
suceden sobre la misma. Por convenio la extensión de este archivo es LDF.

Por lo tanto al crear una base de datos, debemos considerar los siguientes premisas y
reglas para el almacenamiento de los datos:

1. Todas las Bases de Datos tienen un archivo de base de datos primario (.mdf) y

uno para el Log de Transacciones (.ldf). Además puede tener archivos de datos
secundarios (.ndf).

2. Cuando se crea una Base de Datos, una copia de la Base de Datos Model, la cual
incluye tablas del sistema, es copiada en la Nueva Base de Datos.

3. La Data es almacenada en bloques de 8-kilobytes (KB) de espacio de disco
contiguo llamado páginas.

4. Las filas o registros no pueden atravesar páginas. Esto, es, que la máxima
cantidad de datos en una fila de datos simple es de 8060 bytes.

5. Las tablas y los índices son almacenados en Extents. Un Extents consta de ocho
páginas contiguas, o sea 64 KB.

6. El Log de Transacciones lleva toda la información necesaria para la recuperación
de la Base de Datos en una eventual caída del sistema. Por default, el tamaño del
Log de Transacciones es del 25% del tamaño de los archivos de datos. Use esta
configuración como punto de partida y ajuste de acuerdo a las necesidades de su
aplicación.

Archivos de Registro (LOG de Transacciones)

El LOG de transacciones archiva todas las modificaciones de los datos tal cual son
ejecutados. El proceso es como sigue:

1. Una modificación de datos es enviada por la aplicación cliente.

2. Cuando una modificación es ejecutada, las páginas afectadas son leídas del disco

a memoria (Buffer Cache), provista de las páginas que no están todavía en la
Data Cache del query previo.

3. Cada comando de modificación de datos es archivado en el LOG. El cambio

siempre es archivado en el LOG y es escrito en el disco antes que el cambio sea
hecho en la Base de Datos. Este tipo de LOG es llamado LOG de tipo write-ahead.

4. Una vez que las páginas de datos residen en el Buffer Cache, y las páginas de

LOG son archivadas sobre el disco en el archivo del LOG, el proceso de
CHECKPOINT, escribe todas las transacciones completas a la Base de Datos en
el disco.

Si el sistema falla, automáticamente el proceso de recuperación usa el LOG de
Transacciones para llevar hacia delante todas las transacciones comprometidas
(COMMIT) y llevar hacia atrás alguna transacción incompleta (ROLLBACK).

Los marcadores de transacción en el LOG son usados durante la recuperación
automática para determinar los puntos de inicio y el fin de una transacción. Una
transacción es considerada completa cuando el marcador BEGIN TRANSACTION
tiene un marcador asociado COMMIT TRANSACTION. Las páginas de datos son
escritas al disco cuando ocurre el CHECKPOINT.

Creación de Base de Datos

Se puede crear una base de datos de distintas maneras, utilizando el Wizard, desde el
Administrador Empresarial o a través del Query Analizer.

Desde el Asistente

Ingrese al Administrador Empresarial y seleccione la carpeta Bases De Datos, tal como
lo muestra la figura

Haga clic en el menú Herramientas y seleccione la opción Asistentes, extienda la opción
Base de datos y seleccione la primera opción (Asistente para creación de bases de
datos), tal como lo muestra la siguiente imagen:

Se presentará una pantalla de bienvenida al wizard pulse Siguiente:

La siguiente pantalla le permitirá especificar el nombre de la base de datos y las
carpetas donde se almacenaran los archivos de datos y de log.

Luego de pulsar Siguiente, aparece una pantalla donde especificará si desea emplear
mas de un archivo de datos así como también podrá indicar el tamaño de cada archivo:

Luego de pulsar Siguiente, aparecen las opciones para personalizar el crecimiento
automático del archivo de datos:

Luego de pulsar Siguiente. Especifique el nombre para el archivo de log:

Similar al caso del archivo de datos, luego de pulsar Siguiente, también podrá establecer
el crecimiento automático o no del archivo de transacciones:

Luego de pulsar Siguiente, aparecerá la pantalla final;

Pulse Finalizar, de no haber problemas le aparecerá el siguiente mensaje:

Luego de pulsar Aceptar, aparecerá la siguiente pregunta:

Conteste que No, luego de lo cual en el Administrador Empresarial podrá observar la
nueva base de datos.

Desde el Administrador Empresarial

Otra forma de crear la base de datos es desde el Administrador Empresarial, para ello:

Ingrese al Administrador Empresarial, haga clic derecho sobre la carpeta Databases y
seleccione la opción New Database, tal como lo muestra la figura:

Luego aparecerá la siguiente pantalla, coloque el nombre de la base de datos y
opcionalmente podrá especificar el código de página que empleará, esto lo puede
seleccionar de la lista Collation Name:

Para especificar la información referente al archivo de datos, haga un clic en la ficha
Data Files y complete la siguiente información:

Para poder especificar las características del archivo de log, haga clic en la ficha
Transaction Log:

Una vez establecido los valores y luego de pulsar Aceptar, en el Administrador
Empresarial se observara la nueva base de datos creada.

Desde el Analizador de Consultas

Otra de las formas de crear una base de datos es a través del Analizador de Consultas,
donde emplearemos la sentencia CREATE DATABASE, cuya sintaxis reducida es la
siguiente:

CREATE DATABASE NombreBaseDatos
[ON [PRIMARY
 NAME = nombreArchivoLógico,
 FILENAME = 'nombreArchivoSO',
 SIZE = tamaño,
 MAXSIZE = { tamañoMáximo | UNLIMITED } ,
 FILEGROWTH = incrementoCrecimiento) [,…n]
]
[LOG ON
 NAME = nombreArchivoLógico,
 FILENAME = 'nombreArchivoSO',
 SIZE = tamaño,
 MAXSIZE = { tamañoMáximo | UNLIMITED } ,
 FILEGROWTH = incrementoCrecimiento) [,…n]

 [COLLATE nombre_collation] [FOR LOAD | FOR ATTACH]

Argumentos

nombreBaseDatos
Es el nombre de la nueva base de datos, deben ser únicos en un servidor y pueden tener
hasta 128 caracteres, a menos que no se especifique ningún nombre lógico para el
registro. Si no se especifica ningún nombre lógico de archivo de registro, SQL Server
genera un nombre lógico al anexar un sufijo a nombreBaseDatos.

ON
Especifica que los archivos de disco utilizados para almacenar la parte de datos
(archivos de datos) se han definido explícitamente. La palabra clave va seguida de una
lista delimitada por comas de elementos que definen los archivos de datos del grupo de
archivos principal.

PRIMARY
Especifica que la lista de archivos está asociada al grupo principal. Este grupo contiene
todas las tablas del sistema de base de datos. También contiene todos los objetos no
asignados a los grupos de archivos de usuario. El primer archivo especificado pasa a ser
el archivo principal, el cual contiene el inicio lógico de la base de datos y de las tablas
del sistema. Una base de datos sólo puede tener un archivo principal. Si no se especifica
PRIMARY, el primer archivo enumerado en la instrucción CREATE DATABASE se
convierte en el archivo principal.

LOG ON
Especifica que los archivos de registro de la base de datos (archivos de registro) se han
definido explícitamente. La palabra clave va seguida de una lista delimitada por comas
la cual define las características de los archivos de registro. Si no se especifica LOG
ON, se crea automáticamente un único archivo de registro con un nombre generado por
el sistema y un tamaño que es el 25% de la suma de los tamaños de todos los archivos
de datos de la base de datos.

FOR LOAD
Cláusula que se mantiene por compatibilidad con versiones anteriores de SQL Server.
La base de datos se crea con la opción de base de datos dbo use only activada y el
estado se establece en "cargando". En realida esto no es necesario en SQL Server 7.0
porque la instrucción RESTORE puede volver a crear la base de datos como parte de la
operación de restauración.

FOR ATTACH
Crea la base de datos desde un conjunto existente de archivos del sistema operativo.
Debe existir una entrada de archivos que determine cual es el archivo principal, las otras
entradas son necesarias si existen archivos creados en una ruta de acceso distinta de
cuando se creó la base de datos por primera vez o se adjuntó por última vez.

Utilice el procedimiento almacenado del sistema sp_attach_db en lugar de emplear
CREATE DATABASE FOR ATTACH directamente, esto deberá emplearlo si debe
especificar más de 16 archivos.

COLLATE
Especifica el conjunto de caracteres que se empleará para almacenar información en la
base de datos, se puede emplear un conjunto de caracteres especificado por Windows o
por SQL Server. De no especificarse se empleará el conjunto de caracteres seleccionado
en el momento de la instalación

NAME
Especifica el nombre lógico del archivo.
No se requiere este parámetro cuando se especifica FOR ATTACH.
Este nombre es el utilizado para referenciar al archivo en las sentencias del Transact-
SQL que se ejecuten después.

FILENAME
Especifica el nombre de archivo del sistema (archivo físico).
Se debe especificar la ruta de acceso y nombre de archivo que el sistema operativo
utiliza cuando crea la base de datos. La ruta de acceso debe especificar un directorio en
el servidor sobre el que se instalo SQL Server.
No se puede especificar un directorio en un sistema comprimido de archivos.

SIZE
Especifica el tamaño para el archivo. De no hacerlo SQL Server utiliza el tamaño del
archivo principal de la base de datos model.
Cuando este parámetro no es especificado para un archivo secundario o de registro SQL
Server automáticamente le asigna 1 MB.
El valor mínimo a asignar es de 512 KB. Si no se especifica tamaño, el valor
predeterminado es 1 MB. El tamaño especificado para el archivo principal debe tener al
menos el tamaño del archivo principal de la base de datos model.

MAXSIZE
Especifica el tamaño máximo de crecimiento del archivo. Se pueden utilizar los sufijos
KB y MB, el valor predeterminado es MB. Especifique un número entero; no incluya
decimales. Si no se especifica, el archivo aumenta hasta que el disco esté lleno.

UNLIMITED
Especifica que el archivo aumenta de tamaño hasta que el disco esté lleno.

FILEGROWTH
Especifica el incremento de crecimiento del archivo, este valor no puede exceder el
valor MAXSIZE. Emplee un número entero. Un valor 0 indica que no hay crecimiento.
El valor se puede especificar en MB, KB o %, el valor predeterminado es MB. Cuando
se especifica %, el tamaño de incremento de crecimiento es el porcentaje especificado
del tamaño del archivo en el momento en que tiene lugar el incremento. De no emplear
FILEGROWTH, el valor predeterminado es 10% y el valor mínimo es 64 KB. El
tamaño especificado se redondea al múltiplo de 64 KB más cercano.

Observaciones

Emplee CREATE DATABASE para crear una base de datos y los archivos que
almacenan ésta. SQL Server implementa CREATE DATABASE en dos pasos:

SQL Server utiliza una copia de model para inicializar la base de datos y sus
metadatos.

SQL Server rellena el resto de la base de datos con páginas vacías, excepto las
páginas que tengan datos internos que registren cómo se emplea el espacio en la
base de datos.

Cualquier objeto definido por el usuario en model se copiará a todas las bases de datos
recién creadas.

Cada base de datos nueva hereda los valores opcionales de la base de datos model (a
menos que se especifique FOR ATTACH).

En un servidor se puede especificar un máximo de 32,767 bases de datos.

Cuando especifica una instrucción CREATE DATABASE nombreBaseDatos sin
parámetros adicionales, la base de datos se crea con el mismo tamaño que
model.

Cada base de datos tiene un propietario con capacidad para realizar actividades
especiales. El propietario es el usuario que crea la base de datos, este propietario se
puede cambiar mediante sp_changedbowner.

Para mostrar un informe de una base de datos o de todas las bases de datos de un
servidor con SQL Server, ejecute sp_helpdb. Para obtener un informe acerca del
espacio utilizado en una base de datos, emplee sp_spaceused. Para obtener un informe
de los grupos de archivos de una base de datos, utilice sp_helpfilegroup, y utilice
sp_helpfile para obtener el informe de los archivos de la base de datos.

¿Quiénes pueden crear bases de datos?

En forma predeterminada podrán hacerlos los usuarios que pertenecen al rol sysadmin
y dbcreator. Los miembros de las funciones fijas de servidor sysadmin y
SecurityAdmin pueden conceder permisos CREATE DATABASE a otros inicios de
sesión. Los miembros de las funciones fijas de servidor sysadmin y dbcreator pueden
agregar otros inicios de sesión a la función dbcreator. El permiso CREATE
DATABASE debe concederse explícitamente; no se concede mediante la instrucción
GRANT ALL.
Estos permisos se limitan a unos cuantos inicios de sesión para mantener el control de la
utilización de los discos del equipo que ejecuta SQL Server.

Ejemplos de creación de base de datos empleando el Analizador de Consultas

Primero ingrese al Analizador de Consultas para ello primero debe especificar el tipo
de autentificación a realizar del sistema o estándar, vea la siguiente figura:

Ejemplo 1
Crear la base de datos Prueba1 con los parámetros En forma predeterminada.
Use Master
GO
Create Database Prueba1
GO

Verifique la creación de la base de datos y note que automáticamente SQL Server
asignó tamaños y nombres lógicos para los archivos. Para ello emplee el siguiente
procedimiento almacenado del sistema:

Sp_HelpDB Prueba1
GO

Debe obtener el siguiente resultado:

name db_size owner dbid created status Compatibility Level
Prueba1 1.12 MB sa 8 Feb 28 2002 Status=ONLINE,
Updateability=READ_WRITE,
UsuarioAccess=MULTI_USUARIO,
Recovery=FULL,
Version=539,
Collation=SQL_Latin1_General_CP1_CI_AS,
SQLSortOrder=52,
IsTornPageDetectionEnabled,
IsAutoCreateStatistics,
IsAutoUpdateStatistics 8.0

Además se mostrará un informe con los archivos que se crearon automáticamente:

Columnas Archivo de datos Archivo de Log
name prueba1 prueba1_log
fileid 1 2

filename

C:\Program Files\Microsoft
SQL
Server\MSSQL\data\Prueba1.
mdf

C:\Program Files\Microsoft SQL
Server\MSSQL\data\Prueba1_Log.
ldf

filegroup PRIMARY NULL
size 640Kb 504Kb
maxsize Unlimited Unlimited
growth 10% 10%
usage data only log only

Ejemplo 2
Crear la base de datos Prueba2 con un archivo de datos de 10Mb, un tamaño máximo de
20Mb y un crecimiento de 1Mb., el archivo de registro debe asumir los valores por
default.
Use Master
GO
Create Database Prueba2
On Primary
 (NAME = ‘Prueba2_Data’,
 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL\data\Prueba2 _Data.Mdf’,
 SIZE = 10Mb,
 MAXSIZE = 20Mb,
 FILEGROWTH= 1Mb)
GO

Verifique la creación de la base de datos anterior:

Sp_HelpDB Prueba2
GO
Puede notar como SQL Server aprovecha los valores predeterminados en la base de
datos model para completar la información que corresponde al log de transacciones, la
cual no se específico en la sentencia CREATE DATABASE.

Ejemplo 3
Crear la base de datos Prueba3 especificando un archivo de datos con un tamaño inicial
de 15Mb, un tamaño máximo de 30Mb y un crecimiento de 5Mb., el archivo de registro
debe tener un tamaño inicial de 5MB y uno máximo de 10MB, el crecimiento debe ser
de 1MB.
Use Master
GO
Create Database Prueba3
On Primary
 (NAME = ‘Prueba3_Data’,

 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL\data\Prueba3 _Data.Mdf’
 SIZE = 15Mb,
 MAXSIZE = 30Mb,
 FILEGROWTH= 5Mb)
Log On
 (NAME = ‘Prueba3_Log’,
 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL\data\Prueba3 _Log.Ldf’
 SIZE = 5Mb,
 MAXSIZE = 10Mb,
 FILEGROWTH= 1Mb)
GO
-- Verifique la información con :
Sp_HelpDB Prueba3
GO

Otra de las formas de comprobar la creación de las bases de datos es mostrando las filas
de la tabla del sistema SysDatabases.

Use Master
GO
Select DbID, Name From SysDatabases
GO

Revise los resultados.

Creando Múltiples Archivos

La ventaja de almacenar la base de datos en múltiples archivos radica en la flexibilidad
de modificar en futuro la configuración del hardware sin que se vea afectada la base de
datos, otro de los motivos es que si emplea una base de datos de 15GB y por algún
motivo ocurre una falla y desea recuperar desde el backup, necesitaría una unidad de 15
o mas gigabytes de almacenamiento, mientras que si distribuyó la base de datos en
múltiples archivos pequeños será mas probable que tenga disponibles múltiples
unidades de 4 GB que unidades de 15GB.

Con las sentencias del Transact-SQL es posible modificar la lista de archivos que
conforman la base de datos, agregar o quitar archivos, incluso puede definir nuevos
grupos de archivos los cuales permitirán tratar múltiples archivos como si se tratará de
uno solo.

Para poder realizar esta tarea emplee la sentencia ALTER DATABASE

Sintaxis
ALTER DATABASE NombreBD

{ ADD FILE <Especificación del archivo> [,…n] [TO FILEGROUP
nombreGrupoArchivos]
| ADD LOG FILE <<Especificación del archivo> [,…n]
| REMOVE FILE nombreArchivoLógico
| ADD FILEGROUP nombreGrupoArchivos
| REMOVE FILEGROUP nombreGrupoArchivos
| MODIFY FILE <<Especificación del archivo>
| MODIFY FILEGROUP nombreGrupoArchivos propiedadGrupoArchivos
| SET < optionspec > [,...n] [WITH < termination >]
| COLLATE < collation_name > }

Argumentos
ADD FILE
Especifica que se está agregando un archivo.

TO FILEGROUP
Especifica el grupo de archivos al que debe agregarse el archivo especificado.

ADD LOG FILE
Especifica que se agregue un archivo de registro a la base de datos indicada.

REMOVE FILE
Elimina el archivo de la base de datos y retira su referencia en las tablas del sistema
además de eliminar el archivo físico. Este archivo no podrá eliminarse si no está vacío.

ADD FILEGROUP
Especifica que se va a agregar un grupo de archivos.

REMOVE FILEGROUP
Quita el grupo de archivos de la base de datos, no se puede realizar si el grupo de
archivos no está vacío.

MODIFY FILE
Especifica que el archivo dado se debe modificar, incluidas las opciones FILENAME,
SIZE, FILEGROWTH y MAXSIZE. Sólo se puede cambiar una de estas propiedades a
la vez.

MODIFY FILEGROUP nombreGrupoArchivos propiedadGrupoArchivos
Especifica la propiedad que se aplicará a los archivos que pertenecen al grupo de
archivos.

Los valores de propiedadGrupoArchivos son:

READONLY
Especifica que el grupo de archivos es de sólo lectura. De tal manera que no se
podrán realizar modificaciones sobre los archivos pertenecientes a este grupo.

READWRITE
Invierte la propiedad READONLY. Están habilitadas las actualizaciones para los
objetos del grupo de archivos.

DEFAULT
Especifica que el grupo de archivos es el predeterminado de la base de datos. Sólo un
grupo puede ser el predeterminado, esta propiedad se quita del grupo de archivos que
había sido anteriormente el predeterminado. CREATE DATABASE hace que el grupo
de archivos principal sea el grupo predeterminado inicialmente. Si no se especifica
ningún grupo de archivos en las instrucciones CREATE TABLE, ALTER TABLE o
CREATE INDEX, se crean nuevas tablas e índices en el grupo predeterminado.

SET
Permite establecer valores para algunas de las características de trabajo en una base
de datos, por ejemplo el tipo de recovery que se empleará para los backups.

COLLATE
Especifica el conjunto de caracteres a emplear, ya sean de Windows o de SQL Server
2000.

Observaciones
No se puede agregar o quitar un archivo mientras se está ejecutando una instrucción
BACKUP.

Ejemplo 1
Modificar la base de datos Prueba2, de tal manera que le debe agregar un archivo de
datos secundario de 5MB y un tamaño máximo de 10 MB. con un crecimiento de 1MB.
Antes de ejecutar el siguiente comando utilice Sp_HelpDB Prueba2, para comparar
luego con los resultados después de ejecutar la sentencia.

USE master
GO
ALTER DATABASE Prueba2
ADD FILE
(
NAME = Prueba2Sec_Data,
FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL\data\
Prue2Data.ndf',
SIZE = 5MB,
MAXSIZE = 10MB,

FILEGROWTH = 1MB
)
GO
Sp_HelpDB Prueba2
GO
-- Compare los resultados con los anteriores
Si desea información de los archivos, emplee la siguiente sentencia:

Use Prueba2
GO
Sp_HelpFile
GO

Si desea ver las características sólo del archivo que agrego utilice la siguiente
sentencia:

Sp_HelpFile Prueba2Sec_Data
GO

/* El resultado le mostrará información del archivo que acaba de agregar */
Ejemplo 2
Crear dos grupos de archivos en la base de datos Prueba2, el primer grupo se llamará
CONSULTORES y el otro se llamará OPERACIONES.

ALTER DATABASE Prueba2
ADD FILEGROUP Consultores
GO
ALTER DATABASE Prueba2
ADD FILEGROUP Operaciones
GO

-- Verifique la información con las siguientes instrucciones:

Use Prueba2
GO
Sp_HelpFileGroup
GO

Se mostrará el siguiente resultado:

groupname groupid filecount
Consultores 2 0
Operaciones 3 0
PRIMARY 1 2

Ejemplo 3
A cada uno de los grupos creados anteriormente añadale dos archivos de datos, para
ello considere lo siguiente: los archivos del grupo CONSULTORES deben tener un
tamaño de 10 MB. cada uno, con un tamaño máximo de 20 MB y un crecimiento de

2 MB., mientras que los del grupo OPERACIONES tendrán un tamaño inicial de 5 MB
y un máximo de 30 MB. con un crecimiento de 5 Mb.

Use Master
GO
ALTER DATABASE Prueba2
ADD FILE
(NAME = ‘DatCons01’,
 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL\data\DatCons1.ndf’,
 SIZE = 10MB,
 MAXSIZE = 20MB,
 FILEGROWTH = 2MB),
(NAME = ‘DatCons02’,
 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL\data\DatCons2.ndf’,
 SIZE = 10MB,
 MAXSIZE = 20MB,
 FILEGROWTH = 2MB),
TO FILEGROUP CONSULTORES
GO
ALTER DATABASE Prueba2
ADD FILE
(NAME = ‘DatOper01’,
 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL\data\DatOper1.ndf’,
 SIZE = 5MB,
 MAXSIZE = 30MB,
 FILEGROWTH = 5MB),
(NAME = ‘DatOper02’,
 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL\data\DatOper2.ndf’,
 SIZE = 5MB,
 MAXSIZE = 30MB,
 FILEGROWTH = 5MB),
TO FILEGROUP OPERACIONES
GO

Una vez que ejecuta estas sentencias, verifique la información con la siguiente
instrucción:
Use Prueba2
GO
Sp_HelpFileGroup
GO

groupname groupid filecount
Consultores 2 2
Operaciones 3 2
PRIMARY 1 2

Si desea información de un grupo de archivos en particular, utilice:
Sp_HelpFileGroup Operaciones
GO

Ejemplo 4
Modificar el tamaño del DatOper01 asignándole como nuevo tamaño máximo 40 Mb.

Use Master
GO
ALTER DATABASE Prueba2
MODIFY FILE
(NAME = ‘DatOper01’,
 MAXSIZE = 40Mb)
GO

-- Para verificar el cambio emplee la siguiente instrucción:

Sp_HelpFile DatOper01
GO

Ejemplo 5
Eliminar el archivo DatOper01.

Use Master
GO
ALTER DATABASE Prueba2
REMOVE FILE ‘DatOper01’
GO

Ejemplo 6
Hacer que el grupo de archivos Operaciones sea el grupo En forma predeterminada.

Use Master
GO
ALTER DATABASE Prueba2
 MODIFY FILEGROUP Operaciones DEFAULT
GO

Cuando lo que se requiere es eliminar una base de datos, debe emplear la sentencia
DROP DATABASE, cuya sintaxis es la siguiente:

DROP DATABASE database_name [,...n]

Ejemplo 7
Eliminar la base de datos Prueba2.

Use Master

GO
DROP DATABASE Prueba2
GO

Revisar la tabla SysDatabases, verifique que se elimino la entrada de Prueba2

Ejemplo 8
Eliminar la base de datos Prueba1 y NuevoNombre

Use Master
GO
DROP DATABASE Prueba1, NuevoNombre
GO

Revisar la tabla SysDatabases, verifique que se elimino la entrada de Prueba2
Use Master
GO
Select Name From SysDatabases
GO

Renombrando Base de Datos

Para quitar una base de datos, utilice DROP DATABASE. Para cambiar el nombre de
una base de datos, utilice sp_renamedb, pero recuerde que para esto la base de datos a
renombrar tiene que tener activa la opción ‘single user’, si desea comprobar el empleo
de esta sentencia realice la siguiente secuencia de instrucciones desde el Analizador de
Consultas, verifique la base de datos Prueba3 (creada en el Ejemplo3) no este
seleccionada en el Administrador Empresarial, para asegurarse haga clic izquierdo en
Databases, luego ingrese al Analizador de Consultas con una cuenta de administrador
(Windows authentication) o con la cuenta sa :

/* Comprueba la presencia de Prueba3 */
Use Master
GO
Select name From SysDatabases
GO

El resultado sería:

Name
master
tempdb
model
msdb
pubs
Northwind
Prueba3
Prueba1
Prueba2

/* Para renombrar active la opción Single User en la Base de datos a
renombrar */
Sp_DBOption ‘Prueba3’, ‘Single User’, ‘True’
GO

El resultado sería:

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.
The database is now single usuario.

/* En este instante la base de datos puede ser renombrada */
Sp_RenameDB ‘Prueba3’, ‘NuevoNombre’
GO

El resultado sería:

(1 row(s) affected)
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.
The database is renamed and in single usuario mode.
A member of the sysadmin rol must reset the database to multiusuario mode with
sp_dboption.

/* Compruebe el correcto renombrado de la base de datos y luego retire la
opción single usuario de la base de datos */
Select Name From SysDatabases
GO
Sp_DBOption 'NuevoNombre', 'Single Usuario', 'True'
GO

Creación de Tablas

Objetivos:

• Determinar Tipos de datos de SQL Server a utilizar en las tablas
• Implementación de tablas, establecer restricciones
• Asignar permisos

Temas:

• Tipos de datos de SQL Server – Tipos de datos de usuario
• Empleo de comando DDL (Data Definition Language)
• Implementar Restricciones
• Asignar roles y/o permisos – Comandos DCL (Data Control Language)

Tipos de Datos de SQL Server 2000

SQL Server brinda una serie de tipos de datos para almacenar la información, la
correcta selección del tipo de dato es simplemente una cuestión de determinar que
valores desea almacenar, como por ejemplo carácter, enteros, binario, fechas, etc. Los
siguientes objetos tienen tipos de datos:

Columnas de tablas y vistas.
Parámetros de procedimientos almacenados.
Variables.
Funciones de Transact-SQL que devuelven uno o más valores de datos de un tipo de
datos específico.
• Procedimientos almacenados que devuelven un código, que siempre es de tipo

integer.

Al asignar un tipo de datos a un objeto se definen cuatro atributos del objeto:

• La clase de datos que contiene el objeto, por ejemplo, carácter, entero o binario.
• La longitud del valor almacenado o su tamaño.
• La precisión del número (sólo tipos de datos numéricos).

La precisión es el número de dígitos que puede contener el número. Por ejemplo, un
objeto smallint puede contener hasta 5 dígitos, con lo que tiene una precisión de 5.

• La escala del número (sólo tipos de datos numéricos).
La escala es el máximo número de dígitos a la derecha del separador decimal. Por
ejemplo, un objeto int no puede aceptar un separador decimal y tiene una escala de
0. Un objeto money puede tener hasta 4 dígitos a la derecha del separador decimal y
tiene una escala de 4.
Si un objeto se define como money, puede contener hasta 19 dígitos y 4 de ellos
pueden estar a la derecha del decimal. El objeto usa 8 bytes para almacenar los
datos. Por tanto, el tipo de datos money tiene una precisión de 19, una escala de 4 y
una longitud de 8.

Utilizar datos binarios

Los tipos de datos binary y varbinary almacenan cadenas de bits. Mientras que los
datos de carácter se interpretan según la página de códigos de SQL Server, los datos
binary y varbinary son, simplemente, un flujo de bits. Los datos binary y varbinary
pueden tener una longitud de hasta 8.000 bytes.

Las constantes binarias tienen un 0x (un cero y una letra x en minúsculas) a la izquierda,
seguido de la representación hexadecimal del patrón de bits. Por ejemplo, 0x2A
especifica el valor hexadecimal 2A, que es equivalente al valor decimal 42 o un patrón
de bits de un byte de 00101010.

La siguiente es una tabla que describe los tipos de datos provistos por SQL Server:

Categoría Descripción Tipo de Dato Descripción

binary La data debe tener una longitud
fija (hasta 8 KB).

varbinary
Los datos pueden variar en el
número de dígitos
hexadecimales (hasta 8 KB).

Binario

Almacenan cadenas de
bits. La data consiste de
números hexadecimales.
Por ejemplo el decimal
245 es F5 en
hexadecimal.

image
La data puede tener una
longitud variable y exceder los
8Kb.

char Los datos deben tener una
longitud fija (Hasta 8 KB).

varchar
La data puede variar en el
número de caracteres (Hasta 8
KB.)

Caracter

Consisten de una
combinación de letras,
símbolos y números. Por
ejemplo las
combinaciones "John928"
y "(0*&(%B99nh jkJ".

text Los datos pueden ser caracteres
ASCII que excedan los 8 KB.

Datetime
Fechas en el rango 01 Ene
1753 hasta el 31 Dic 9999 (Se
requiere 8 bytes por valor). Fecha y

Hora

Consisten en
combinaciones válidas de
estos datos.
No puede separar en tipos
distintos el
almacenamiento de sólo
fechas o sólo horas.

smalldatetime
Fechas en el rango 01 Ene 1900
hasta 06 Jun 2079 (Se requiere
requires 4 bytes por valor).

decimal

Los datos pueden tener hasta 38
dígitos, todos los cuales podrían
estar a la derecha del punto
decimal. Este tipo de dato
guarda un valor exacto del
número y no una aproximación.

Decimal

Consisten en información
que almacena
información significativa
después del punto
decimal.

numeric
Para SQL Server, el tipo de
dato numeric es equivalente al
tipo de datos decimal.

float Datos en el rango de 1.79E +
308 hasta 1.79E + 308. Punto

Flotante

Números aproximados
(Punto flotante).

real Datos en el rango de 3.40E +
38 hasta 3.40E + 38.

bigint

Datos en el rango de 2^63 (–
9223372036854775808) hasta
2^63–1
(9223372036854775807). Se
requieren de 8 bytes para
almacenar estos valores.

Enteros

Consiste en información
numérica positiva o
negativa como por
ejemplo –5, 0 y 25.

int

Datos en el rango de -
2,147,483,648 hasta
2,147,483,647. Se requieren de
4 bytes para almacenar estos
valores.

Categoría Descripción Tipo de Dato Descripción

smallint

Datos en el rango de –32,768
hasta 32,767. Se requieren 2
bytes por cada valor de este
tipo.

tinyint Datos entre 0 y 255, se requiere
de 1 byte.

money

Datos monetarios entre –
922,337,203,685,477.5808 y
+922,337,203,685,477.5807
(Se requieren 8 bytes por
valor). Monetario

Cantidades monetarias
positivas o negativas.

smallmoney

Datos monetarios entre –
214,748.3648 y 214,748.3647
(Se requieren de 4 bytes por
valor).

bit

Datos que consisten de 1 o 0.
Emplear este tipo de dato para
representar TRUE o FALSE ó
YES o NO.

cursor

Este tipo de dato es empleado
por variables o procedimientos
almacenados que emplean
parámetros OUTPUT
referenciados a un cursor.

timestamp

Este tipo de dato es empleado
para indicar la actividad que
ocurre sobre una fila. La
secuencia de este número se
incrementa en formato binario.

uniqueidentifier

Consiste en un número
hexadecimal que especifica un
globally unique identifier
(GUID), es útil cuando se desea
asegurar la unicidad de una fila
entre muchas otras.

SQL_variant
Almacena varios tipos de datos,
a excepción de text, ntext,
timestamp, image y sql_variant.

Especiales

Consisten en información
que no recae en ninguna
de las categorías
anteriormente
mencionadas.

table

Almacena un resultado de una
consulta para su posterior
procesamiento. Se puede
emplear para definir variables
locales de tipo table o para
retornar los valores devueltos
por una función del usuario.

Unicode Al emplear este tipo de
datos se puede almacenar nchar Datos con longitud fija, hasta

4000 caracteres Unicode.

Categoría Descripción Tipo de Dato Descripción

nvarchar Datos que pueden variar, hasta
4000 caracteres Unicode.

sobre una columna
valores que incluyan este
conjunto de caracteres.
Hay que recordar que los
datos Unicode emplean
dos bytes por cada
carácter a representar.

ntext Datos que exceden los 4000
caracteres Unicode.

Tipos de datos definidos por el usuario

Los tipos de datos definidos por el usuario están basados en los tipos de datos
disponibles a través de SQL Server 2000. Los tipos de datos definidos por el usuario se
pueden emplear para asegurar que un dato tenga las mismas características sobre
múltiples tablas.

Para crear un tipo de dato puede emplear el Administrador Empresarial expandiendo la
base de datos donde desea crear el dato, luego deberá hacer un clic derecho sobre Tipos
de datos definidos por el Usuario y seleccionar “Nuevo tipo de datos definido por el
usuario…”, tal como lo muestra la siguiente representación:

Complete la caja de diálogo, tal como lo muestra la siguiente representación:

Desde el Analizador de Consultas puede emplear el stored procedure del sistema
SP_ADDTYPE cuya sintaxis es la siguiente:

sp_addtype [@typename =] tipo,
[@phystype =] tipoDatosSistema
[, [@nulltype =] 'tipoNull']

Argumentos

[@typename =] tipo

Es el nombre para el tipo de datos definido de usuario, deben ser únicos en cada
base de datos.

[@phystype =] tipoDatosSistema
Es el tipo de datos proporcionado por SQL Server, (decimal, int, etc.) en el que se
basa el tipo de datos del usuario.

[@nulltype =] ‘tipoNull’
Indica la forma en que el tipo de datos del usuario trata los valores nulos. Este
argumento puede tener como valor ‘NULL’, ‘NOT NULL’ o ‘NONULL’. Si no se
define explícitamente tipoNull, se establece de acuerdo al criterio predeterminado
para valores nulos.

Ejemplo 1
En este ejemplo se creará la base de datos Ejemplo y en ella se definirá el tipo de datos
RUC de tipo char(11) el cual no permitirá valores NULL.

USE master
GO
CREATE DATABASE Ejemplo

 ON PRIMARY
 (NAME = 'Ejem_Data',
 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL\data\EjemData.Mdf',
 SIZE = 20Mb,
 MAXSIZE = 40Mb,
 FILEGROWTH = 2Mb)
 LOG ON
 (NAME = 'Ejem_Log',
 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL\data\EjemLog.Ldf',
 SIZE = 5Mb,
 MAXSIZE = 10Mb,
 FILEGROWTH = 1Mb)
GO
Use Ejemplo
GO
Sp_Addtype RUC, 'CHAR(11)', 'NOT NULL'
GO

Para verificar que el tipo de dato se ha creado exitosamente, ejecute la siguiente
consulta:

Select * From Systypes
GO

Ejemplo 2
En este ejemplo se creará el tipo de datos Onomástico de tipo datetime y que permitirá
valores NULL.

EXEC sp_addtype Onomastico, datetime, 'NULL'
GO

Los tipos de datos que se agregan son inscritos en la tabla systypes, estos tipos de
datos son eliminados con el procedimiento almacenado del sistema sp_droptype.

sp_droptype [@typename =] 'tipode dato'
Ejemplo:

Use Ejemplo
GO
Sp_droptype ‘Onomastico’
GO
 Select * From Systypes
GO
Sp_droptype ‘RUC’
GO
 Select * From Systypes
GO

Empleo de Comandos DDLL (Data Definition Language)

SQL Server 2000 emplea las tablas como objetos de almacenamiento de datos que los
usuarios manipulan a través de sus aplicaciones o vía web.

Las tablas son objetos compuestos por una estructura (conjunto de columnas) que
almacenan información interrelacionada (filas) acerca de algún objeto en general.

Las tablas se definen para los objetos críticos de una base de datos, por ejemplo
CLIENTES y su estructura estaría conformada por cada uno de los atributos que se
requieran de los clientes para poder obtener información de ellos, como por ejemplo:
nombres, direcciones, teléfonos, celular, ruc, etc.

Cada uno de estos atributos tiene un tipo de dato definido y además la tabla debe
permitir asegurar que cada código de producto es único en la misma, para asegurarse de
no almacenar la información del mismo cliente dos veces.

Las tablas suelen estar relacionadas entre sí, para facilitar el hecho de consultas entre
múltiples tablas.

Podemos distinguir los siguientes tipos de tablas:

Tablas del Sistema
La información usada por SQL Server y sus componentes son almacenadas en tablas
especiales denominadas como tablas del sistema. Estas tablas no deben alterarse
directamente por el usuario

Si desea obtener información almacenada en las tablas del sistema debe usar:

• Información de la vista esquema (schema view).
• Procedimientos Almacenados de sistema.
• Instrucciones Transact-SQL y funciones.
• SQL-DMO.
• Catálogo de funciones API.

Las tablas del sistema almacenan información, llamada Metadata, acerca del sistema y
de los objetos de las bases de datos. Todas las tablas del sistema comienzan con el
prefijo SYS.

Ejemplo:
SELECT * FROM SYSUSUARIOS

Tablas del Usuario

Permanentes
Son las tablas donde se almacena la información que los usuarios utilizan para sus
operaciones. Esta información existirá hasta que se elimine explícitamente.

Temporales
Estas son tablas similares a las permanentes que se graban en tempdb, y son eliminadas
automáticamente cuando ya no son usadas.
Hay dos tipos de tablas temporales, locales y globales, difieren una de la otra en sus
nombres, su visibilidad y su ámbito de vida.

• Tablas Temporales Locales. El primer carácter del nombre de #, su visibilidad
es solamente para la conexión actual del usuario y son eliminadas cuando el
usuario se desconecta.

• Tablas Temporales Globales. Su nombre comienza con ##, su visibilidad es
para cualquier usuario, y son eliminadas luego que todos los usuarios que la
referencian se desconectan del SQL Server.

Creación de tablas

Cuando se crea una tabla debe asignarle un nombre a la misma, un nombre a cada
columna además de un tipo de datos y de ser necesaria una longitud.
Adicional a las características antes mencionadas, SQL Server 2000 nos brinda la
posibilidad de implementar columnas calculadas, definiéndolas como fórmulas.
Los nombres de las columnas deben ser únicos en la tabla

Consideraciones al crear tablas

• billones de tablas por base de datos
• 1024 columnas por tabla
• 8060 es el tamaño máximo de registro (sin considerar datos image, text y ntext)
• Al momento de definir una columna se puede especificar si la columna soporta o

no valores NULL.

Para crear tablas debe utilizar la sentencia CREATE TABLE, cuya sintaxis es la
siguiente:

CREATE TABLE <Nombre de Tabla>
 (Nom_Columna1 Tipo_de_Dato [NULL l NOT NULL],
 Nom_Columna2 Tipo_de_Dato [NULL l NOT NULL],
 Nom_Columna3 As formula ...)
 GO

También puede crear sus tablas desde el Administrador Empresarial, para ello extienda
la carpeta Tablas de la base de datos donde creará la tabla, haga clic derecho y
seleccione Nueva Tabla, tal como lo indica la siguiente representación:

Aparecerá la siguiente caja de diálogo, complete de acuerdo a la representación:

Cuando finalice pulse el icono de grabar y asigne el nombre de acuerdo a la
representación:

Luego de pulsar Aceptar, pulse la combinación Ctrl-F4 y podrá observar que el icono
correspondiente a esta nueva tabla aparece en el panel de la derecha.

Para agregar los registros de prueba de esta tabla, haga clic derecho sobre la tabla
DemoTabla, seleccione la opción Open table y luego un clic en Return all rows, tal
como lo muestra la siguiente figura:

Agregar unos registros al finalizar pulse Ctrl-F4.

Ejercicios:

En la base de datos Ejemplo, crear las siguientes tablas:

CLIENTES

Nombre de Columna Tipo de dato Permite NULL
num_clie integer NOT NULL
empresa varchar(20) NOT NULL
rep_clie Integer NULL
limite_credito Money NULL

Agregar los siguientes registros a la tabla Clientes:

Al terminar pulse CTRL-F4 con ello los registros permanecerán en la tabla.

RepVentas

Nombre de Columna Tipo de dato Permite NULL
num_empl integer NOT NULL
nombre varchar(15) NOT NULL
edad integer
oficina_rep integer

titulo varchar(10)
contrato date NOT NULL
director integer
cuota money
ventas money NOT NULL

También podemos crear tablas a partir de sentencias del Transact para ingrese al
Analizador de Consultas y ejecute las siguientes instrucciones:

Use Ejemplo
GO
CREATE TABLE Oficinas
(oficina integer not null,
 ciudad varchar(15) not null,
 region varchar(10) not null,
 dir integer,
 objetivo money,
 ventas money not null)
GO

PEDIDOS

Nombre de Columna Tipo de dato Permite NULL
num_pedido integer NOT NULL
fecha_pedido datetime NOT NULL
clie Integer NOT NULL
rep integer
fab char(3) NOT NULL
producto char(5) NOT NULL
cant integer NOT NULL
importe money NOT NULL

PRODUCTOS

Nombre de Columna Tipo de dato Permite NULL
id_fab char(3) NOT NULL
id_producto char(5) NOT NULL
descripcion varchar(20) NOT NULL
precio Money NOT NULL
existencias Integer NOT NULL

Nota: Una vez que terminó de crear las tablas ejecute el script AgregaDatos.sql para
poder poblar la información de las tablas.

Modificación de la estructura de las tablas

Con SQL Server 2000 se puede modificar la estructura de las tablas, se podrá agregar,
eliminar o modificar las características de las columnas de la tabla.

Para demostrar el empleo de estas instrucciones emplearemos una tabla de prueba a la
cual le daremos la siguiente estructura:

Use Ejemplo
GO
Create Table Prueba
(cod char(1) NOT NULL,
 nom char(20) NULL,
 pat varchar(20) NOT NULL,
 mat varchar(20) NOT NULL)
GO
Verificar la creación de la tabla con la siguiente instrucción:

Sp_Help Prueba
GO

Ahora modificaremos el campo nom para asignarle como tipo de datos varchar con la
misma longitud y que no permita valores NULL

ALTER TABLE Prueba
ALTER COLUMN nom varchar(20) NOT NULL
GO

Verifique empleando:
Sp_Help Prueba
GO

Luego agregaremos un campo llamado Sueldo de tipo money:

ALTER TABLE Prueba
ADD Sueldo money
GO

Una observación es que cuando agrega una columna con ALTER TABLE no puede
utilizar NOT NULL, salvo que emplee la propiedad IDENTITY en una columna.

Verifique la modificación de la tabla:
Sp_Help Prueba
GO

Agregar la columna fecha_nac, de tipo datetime:

ALTER TABLE Prueba
ADD fecha_nac datetime

GO

Sp_Help Prueba
GO

Ahora eliminaremos la columna sueldo:

ALTER TABLE Prueba
DROP COLUMN sueldo
GO

Sp_Help Prueba
GO

Una observación importante, antes de eliminar una columna deberá eliminar los índices
basados en esa columna.

Ahora eliminaresmo la columna cod:

ALTER TABLE Prueba
DROP COLUMN cod
GO

Otra de las formas de modificar la estructura de una tabla es desde el Administrador
Empresarial, para ello haga clic derecho sobre la tabla a modificar y seleccione la
opción Diseñar Tabla, tendrá una presentación similar a la que utilizó al momento de
crear la tabla.

Si tan sólo desea observar la estructura haga doble clic sobre la tabla y aparecerá la
siguiente presentación:

Valores autogenerados para las columnas

En SQL Server 2000 se puede definir columnas que obtengan valores generados por el
sistema, para ello podemos hacer uso de:

Propiedad Identity

Permite generar valores secuenciales del sistema, este tipo de valores pueden ser
utilizados en columnas que serán empleadas como primary key.
Para emplear esta propiedad debe especificar un valor de inicio y uno de incremento.
Recuerde que este tipo de columnas no son editables.

Ejemplo:

USE EJEMPLO
GO
ALTER TABLE Prueba
ADD COLUMN cod integer Identity(1,1) NOT NULL
GO

Para comprobar la generación de los valores ejecute la siguiente secuencia de
comandos:

USE EJEMPLO

GO
INSERT PRUEBA VALUES ('JOSE', 'ROJAS', 'CALDERON',1000)
GO
INSERT PRUEBA VALUES ('ANA MARIA', 'SALAS', 'GUILLEN',1000)
GO
SELECT COD, NOM, PAT, MAT, SUELDO FROM PRUEBA
GO

Para ver información sobre la columna IDENTITY puede utilizar las funciones:

Select Ident_Seed('Prueba') /* Retorna el valor de inicio de la columna
identity */
GO
Select Ident_Incr('Prueba') /* Retorna el valor de incremento de la columna
identity */
GO

Función NEWID y Datos de tipo UNIQUEIDENTIFIER

El tipo de dato uniqueidentifier y la función NEWID trabajan unidas para poder generar
valores en el formato GUID.
Este tipo de datos no genera valores automáticamente, sino que por el contrario hay que
definirle un valor En forma predeterminada que especifique el empleo de la función
NEWID.

Para poder observar un ejemplo de lo antes explicado, ejecute la siguiente secuencia de
comandos:

CREATE TABLE Prueba2
(código uniqueidentifier NOT NULL DEFAULT NEWID(),
 nombre char(20) NOT NULL)
GO

INSERT Prueba2 (nombre) VALUES (‘Mauricio’)
GO
INSERT Prueba2 (nombre) VALUES (‘Gina’)
GO
INSERT Prueba2 (nombre) VALUES (‘Cristina’)
GO
SELECT * FROM Prueba2
GO

Eliminación de tablas

Para eliminar una tabla, haga clic derecho sobre la tabla y seleccione la opción Eliminar

aparecerá la siguiente caja de diálogo:

Pulse clic sobre Quitar Todos y con ello la tabla será retirada de la base de datos.

Otra forma es utilizando la sentencia DROP TABLE cuya sintaxis es la siguiente:

DROP TABLE <Nombre de la Tabla>

Para probar el empleo de esta instrucción utilice la siguiente sentencia:

DROP TABLE Prueba2
GO

Compruebe que las tablas Prueba y Prueba2 están eliminadas, con la siguiente
instrucción:

SELECT NAME FROM SYSOBJECTS WHERE TYPE='U'
GO

Implementar Restricciones

Uno de los principales objetivos de una base de datos relacional es cuidar y controlar la
integridad de datos, la cual podría perderse ante operaciones que modifican la
información como: INSERT, UPDATE y DELETE.

Por ejemplo se puede perder la integridad de datos ante alguna de las siguientes
situaciones:

• Se puede registrar un pedido de un producto no existente
• Podría modificarse los datos existentes son valores incorrectos
• Los cambios a la base de datos podrían aplicarse parcialmente, por ejemplo si se

registra un pedido sin actualizar el stock del producto requerido.

SQL Server provee de múltiples medios para controlar la integridad de datos, como por
ejemplo:

• Datos Requeridos, es una de las restricciones mas sencillas que especifican que
columnas permiten valores nulos y que columnas no. Al momento de definir las
columnas de una tabla podrá asignar a cada columna la especificación NULL o
NOT NULL.

• Control de validez, permite controlar los valores que se le asignarán a una
columna. Por ejemplo en una columna que guarde promedios de estudiantes se
podría controlar que el rango de valores se encuentre entre 0 y 10.

• Integridad de entidad, referido a que una clave principal asegura la unicidad de
cada registro.

• Integridad referencial, asegura las relaciones entre las claves primarias y claves
foráneas, por ejemplo al agregar un pedido controlar que el código de producto
que se especifica en el pedido exista en la tabla de productos.

• Reglas comerciales, las modificaciones en la base de datos deben cumplir con
ciertos requisitos para poder mantener la información íntegra, por ejemplo en el
caso anteriormente mencionado, el producto podría existir pero el stock
encontrarse en 0, de tal manera que no debería registrarse el pedido.

SQL Server para poder forzar la integridad de datos propone dos modalidades:

• Integridad Declarativa

Se debe definir el criterio de consistencia como criterio de la definición del
objeto.
Para utilizar integridad declarativa se puede emplear constraints, defaults y rules.

• Integridad por Procedimientos
Se pueden escribir procedimientos almacenados y desencadenadores (Triggers)
para poder forzar la integridad de datos. Aunque las restricciones muy complejas
podrían implementarse a través de lenguajes de programación y otras
herramientas clientes.

En esta parte del capítulo revisaremos la integridad declarativa definiéndola a partir de
los CONSTRAINTS.

Los CONSTRAINTS son un método estándar de forzar la integridad de datos, aseguran
que los datos ingresados a las columnas sean válidos y que las relaciones entre las tablas
se mantendrá.

Los constraints pueden definirse al momento de crear la tabla, aunque también es
posible hacerlo después de que las tablas se han creado.
Los CONSTRAINTS se ejecutan antes que la información se registre en el log.

Definir restrincción PRIMARY KEY

ALTER TABLE <Nombre de la Tabla>
ADD CONSTRAINT <Nombre del Constraint>
PRIMARY KEY (columna1, ...)
GO

Un constraint de tipo PRIMARY KEY asegura la unicidad de cada fila en la tabla, sólo
se podrá definir uno por tabla y debemos recordar que no permite valores NULL.

En forma predeterminada crea un índice CLUSTERED.

Ejemplos:

Implementar un PRIMARY KEY Constraint que asegure la unicidad de cada cliente.

Use Ejemplo
GO

Select * From Clientes /* Note el orden de los códigos de clientes */
GO

ALTER TABLE Clientes
ADD CONSTRAINT PK_Cli_numclie
PRIMARY KEY (num_clie)
GO

Select * From Clientes /* Note que las filas aparecen ordenadas */
GO

Implementar un PRIMARY KEY Constraint que asegure la unicidad de cada
representante de ventas.

Select * From RepVentas /* Note el orden de los códigos de empleados */
GO

ALTER TABLE RepVentas
ADD CONSTRAINT PK_num_clie
PRIMARY KEY (num_empl)
GO

Select * From RepVentas /* Note que las filas aparecen ordenadas */
GO

Implementar un PRIMARY KEY Constraint que asegure la unicidad de cada oficina.

Select * From Oficinas /* Note el orden de los códigos de oficinas */
GO

ALTER TABLE Oficinas
ADD CONSTRAINT PK_Oficina
PRIMARY KEY (Oficina)
GO

Select * From Oficinas /* Note que las filas aparecen ordenadas */
GO

Implementar un PRIMARY KEY Constraint que asegure la unicidad de cada pedido.

Select * From Pedidos /* Note el orden de los códigos de pedidos */
GO

ALTER TABLE Pedidos
ADD CONSTRAINT PK_num_pedido
PRIMARY KEY (num_pedido)
GO

Select * From Pedidos /* Note que las filas aparecen ordenadas */
GO

Implementar un PRIMARY KEY Constraint que asegure la unicidad de cada producto.

Select * From Productos /* Note el orden de los códigos de producto */
GO

ALTER TABLE Productos
ADD CONSTRAINT PK_fab_prod
PRIMARY KEY (id_fab, id_producto)
GO

Select * From Productos /* Note que las filas aparecen ordenadas */

GO

Definir FOREIGN KEY Constraint

ALTER TABLE <Nombre de la Tabla>
ADD CONSTRAINT <Nombre del Constraint>
FOREIGN KEY (columna1, ...)
REFERENCES Tabla(columna, …)
GO

Un foreign key constraint permjite forzar la integridad de datos manteniendo la relación
entre una llave primaria y una llave secundaria.
Para implementar este tipo de característica debemos recordar que el número de
columnas y el tipo de datos referenciados en la cláusula FOREIGN KEY debe ser el
mismo que el mencionado en la cláusula REFERENCES

Ejemplos:

Implementar un foreign key constraint que asegure que cada vez que asigne un
representante de ventas a un cliente este exista.

USE Ejemplo
GO

ALTER TABLE Clientes
ADD CONSTRAINT FK_Cli_RepVentas
FOREIGN KEY (Rep_Clie)
REFERENCES RepVentas(Num_Empl)
GO

Implementar un foreign key constraint que asegure que cada vez que a un representante
de ventas se le asigne un director, esté se encuentre registrado.

ALTER TABLE RepVentas
ADD CONSTRAINT FK_Dir_RepVentas
FOREIGN KEY (Director)
REFERENCES RepVentas(Num_Empl)
GO

Implementar un foreign key constraint que asegure que la oficina asignada al
representante de ventas se encuentre en la tabla oficinas.

ALTER TABLE RepVentas
ADD CONSTRAINT FK_Ofi_Oficinas
FOREIGN KEY (oficina_rep)
REFERENCES Oficinas(Oficina)
GO

Implementar un foreign key constraint que verifique el código de director de la oficina.

ALTER TABLE Oficinas
ADD CONSTRAINT FK_Direc_RepVentas
FOREIGN KEY (dir)
REFERENCES RepVentas(num_empl)
GO

Implementar un foreign key constraint que verifique la existencia del representante de
ventas que toma un pedido.

ALTER TABLE Pedidos
ADD CONSTRAINT FK_Rep_RepVentas
FOREIGN KEY (rep)
REFERENCES RepVentas(num_empl)
GO

Implementar un foreign key constraint que verifique la existencia de los productos que
se indican al momento de tomar un pedido.

ALTER TABLE Pedidos
ADD CONSTRAINT FK_FabPro_Productos
FOREIGN KEY (fab, producto)
REFERENCES Productos(id_fab, id_producto)
GO

 Definir CHECK CONSTRAINT

ALTER TABLE <Nombre de la tabla>
ADD CONSTRAINT <Nombre del Constraint>
CHECK <Regla a validar>
GO

Un Check Constraint restringe a los usuarios la posibilidad de ingresar valores
inapropiados a una columna. Este constraint actúa cuando el usuario emplea una
instrucción INSERT o UPDATE.

Ejemplos:

Implementar un check constraint que verifique que los códigos de los representantes de
ventas sean mayores que 100.

ALTER TABLE RepVentas
ADD CONSTRAINT CK_RV_100
CHECK (Num_Empl > 100)
GO

Implementar un check constraint que verifique que los códigos de los pedidos sean
mayores que 100000.

ALTER TABLE Pedidos
ADD CONSTRAINT CK_Pedidos
CHECK (num_pedido > 100000)
GO

Implementar DEFAULT CONSTRAINTS

ALTER TABLE <Nombre de la tabla>
ADD CONSTRAINT <Nombre del constraint>
DEFAULT <Valor En forma predeterminada>
FOR <columna>
GO

Estos constraints trabajan al momento de utilizar la función INSERT y asignan un valor
automáticamente a la columna que no se le asignó.

Ejemplo:

Asignar un valor en forma predeterminada a la columna DIRECTOR de la tabla que
almacena los datos de los representantes de ventas haciendo que el código En forma
predeterminada sea 106.

ALTER TABLE RepVentas
ADD CONSTRAINT DF_RV_Director
DEFAULT 106
FOR Director
GO

Como parte final de esta implementación emplearemos un conjunto de instrucciones
para tratar de modificar la información de las distintas tablas y veremos como los
constraints implementados realizan su trabajo.

Para ello ejecute las siguientes instrucciones desde el Analizador de Consultas

/* Intentemos agregar un cliente con el código 2113 */
Insert Clientes Values (2113, 'Amago Sys.', 103, 15000)
GO
/* La sentencia falla debido a que el primary constraint 'PK_Cli_numclie'
 le impide incluir códigos duplicados */

/* Ahora indicaremos un código de cliente apropiado pero el código de
 representante de ventas inexistente */
Insert Clientes Values (3000, 'Amago Sys.', 250, 15000)
GO

/* En este caso el error se produce debido a que el foreign key constraint
 'FK_Cli_RepVentas' a detectado que el código del representante de ventas
 es inexistente */

/* Ahora agregaremos un representante de ventas sin indicar el código de su
 director */
Insert RepVentas Values (450, 'Karem Vigo', 33, 22, 'Rep.Ventas', '3/5/1991',
DEFAULT, DEFAULT, 12000)
GO

Select num_empl, nombre, director From RepVentas Where num_empl = 450
GO

/* Luego de ejecutar estas instrucciones observará que el código de director
 asignado a Karem Vigo es el 106, código asignado por el Default Constraint
*/

/* Ahora intentaremos agregar un representante de ventas con código menor
que 100*/

Insert RepVentas Values (50, 'Sofia Quevedo', 33, 22, 'Rep.Ventas', '3/5/1991',
DEFAULT, DEFAULT, 12000)
GO

/* En este caso el error se produce debido a que el check constraint
 a detectado que el código del representante de ventas es menor que
 100 */

Diagrama de Base de Datos

Una vez que hemos terminado de implementar las restricciones especificadas
anteriormente y luego que ya tenemos las restricciones funcionando podríamos dar un
vistazo al diagrama de la base de datos:

Los diagramas representan gráficamente la estructura de la Base de Datos, podemos ver
sus tablas y diseño, además de las relaciones entre ellas. También se convierte en una
herramienta gráfica para crear, modificar e implementar integridad y constancia de
datos.

Ejemplo:

1. Por lo tanto, haga clic derecho sobre Diagramas y seleccione la opción Nuevo
Diagrama de base de datos, tal como lo muestra la figura:

Luego de esto aparecerá un mensaje de bienvenida al asistente para definición del
diagrama de la base de datos, tal como lo muestra la siguiente imagen:

2. Pulse Siguiente y se presentará una caja de diálogo, donde debe seleccionar las
tablas que se muestran en la siguiente representación:

3. Luego de pulsar el botón Agregar y Siguiente, aparecerá la siguiente pantalla:

Luego de pulsar Finalizar tendrá la siguiente representación en pantalla:

Recuperar Información

Objetivos:

Conocer los comandos DML
Realizar JOINS
Conocer la funcionalidad de los Desencadenadores

Temas:

• Sentencia SELECT
• Sentencia INSERT
• Sentencia UPDATE
• Sentencia DELETE
• Recuperar información de dos o más tablas
• Desencadenadores

Uno de los principales motivos por el cual se guarda información, es por que
posteriormente la vamos a consultar, una de las principales razones por las cuales las
bases de datos relacionales lograron gran aceptación fue por la forma tan sencilla de
lograr acceder a los datos.
Y como parte de estas facilidades para poder realizar consultas, encontramos a la
sentencia SELECT.

Select

Recupera información de la Base de Datos y permite la selección de una o más filas o
columnas de una o muchas tablas. La sintaxis completa de la instrucción SELECT es
compleja, sus cláusulas principales pueden ser resumidas de la siguiente manera.

SELECT lista_cols
[INTO nueva_tabla]
FROM tabla_origen
[WHERE condición]

[GROUP BY columna1,…]
[HAVING condición]
[ORDER BY columna1, … [ASC][DESC]]

lista_cols Específica las columnas a ser devueltas por el query.

Tener en cuenta las siguientes consideraciones:

• La lista de select recupera y muestra las columnas en el orden especificado.
• Separar los nombres de columnas con comas, excepto la última columna.
• Usar un asterisco en la lista de select para recuperar todas las columnas de la

tabla.

INTO nueva_tabla Define la creación de una nueva tabla a partir de la respuesta a la
consulta especificada. Esta operación no es registrada en el log.

FROM Determina la tabla o tablas de donde se muestra la información.

WHERE Establece un criterio de selección de filas

GROUP BY Establece la lista de columna por las cuales se agrupara la
información.

HAVING Permite filtrar los grupos generados por GROUP BY

ORDER BY Permite ordenar la información de acuerdo a los requerimientos.

Ejemplos

En los siguientes ejemplos veremos, el uso del SELECT, la creación de campos
calculados, el uso de operadores de funciones agregadas y de group by.

1. Mostrar las lista de las oficinas de ventas con sus objetivos y ventas reales

USE Ejemplo
GO
SELECT CIUDAD, OBJETIVO, VENTAS
FROM Oficinas
GO

2. Mostrar los nombres, oficinas y fechas de contrato de los vendedores

SELECT NOMBRE, OBJETIVO, VENTAS
FROM REPVENTAS
GO

3. Mostrar el nombre, cuota y ventas del empleado de código 107

SELECT NOMBRE, CUOTA, VENTAS
FROM REPVENTAS
WHERE NUM_EMPL = 107

GO

Nótese que en esta última consulta se ha empleado la cláusula WHERE para
restringir el número de filas a devolver, a diferencia de la primera que le devolvía
todas las filas.

4. Mostrar el monto de ventas promedio de los vendedores

SELECT AVG(VENTAS)
FROM REPVENTAS
GO

En este último ejemplo se obtiene un único valor que representa una pequeña
tabla, aunque conste de una sola fila y una sola columna. Este valor es el
resultado de sumar todos los valores del campo VENTAS y dividirlo entre el
número de filas.

5. Mostrar los nombres y fechas de contratos de los vendedores que superaron la
barrera de los 500,000

SELECT NOMBRE, CONTRATO
FROM REPVENTAS
WHERE VENTAS>500000
GO

En este último ejemplo no se obtienen filas, con lo cual queda demostrado que no
siempre las consultas deben devolver filas, esto representa que ningún registro
cumplió con la condición expresada en la cláusula WHERE.

6. Mostrar la CIUDAD, REGION y el IMPORTE de por encima o por debajo del
OBJETIVO

SELECT CIUDAD, REGION, (VENTAS - OBJETIVO) As SITUACION
FROM OFICINAS
GO

Nótese que en el ejemplo se emplea la cláusula As que permite asignar un
encabezado de columna al campo calculado (VENTAS – OBJETIVO).
De los resultados podemos observar que las ciudades de Chicago y Denver aun
se encuentran por debajo del objetivo, mientras que las demás oficinas ya
superaron el objetivo.

7. Mostrar el valor del inventario para cada producto

Select Id_Fab, Id_Producto, Descripcion, (Existencias*Precio) As Valor
From Productos
GO

Similar al ejemplo anterior se emplea un campo calculado al cual se le asigna un
encabezado a través del empleo de la cláusula As.

8. Muestra que sucedería si se eleva el monto de la cuota decada vendedor en un

3% de sus ventas anuales

SELECT NOMBRE, CUOTA, (CUOTA*1.03) As CUOTAPROYECTADA
FROM REPVENTAS
GO

9. Mostrar el nombre, mes y año de contrato de cada representante de ventas

Select Nombre, Month(Contrato) As Mes, Year(Contrato) As Año
FROM REPVENTAS
GO

10. Mostrar los campos CIUDAD y VENTAS separados por la cadena ‘ tiene ventas
de ‘

SELECT CIUDAD, ' tiene ventas de ' , VENTAS
FROM OFICINAS
GO

11. Mostrar todos los campos de la tabla CLIENTES

SELECT * FROM CLIENTES
GO

El caracter * permite recuperar todos los campo y todas las filas de la tabla que se
está consultando.

12. Mostrar todos los campos de la tabla OFICINAS, asi como también una columna
que indique si se alcanzo o no el objetivo.

SELECT *, (VENTAS - OBJETIVO) as SITUACION
FROM OFICINAS
GO

13. Comparar las siguientes consultas:

SELECT DIR FROM OFICINAS
GO

SELECT DISTINCT DIR FROM OFICINAS
GO

Note que en el primer caso se muestran los 5 códigos de director uno por cada fila
existente en la tabla, mientras que con la segunda no se muestran los duplicados.

14. Mostrar las oficinas que han superado el OBJETIVO trazado:

SELECT CIUDAD, VENTAS, OBJETIVO
FROM OFICINAS
WHERE VENTAS > OBJETIVO
GO

15. Mostrar los vendedores que están dirigidos por Jorge Castro (código 104)

SELECT NOMBRE, VENTAS
FROM REPVENTAS

WHERE DIRECTOR = 104
GO

16. Muestre a los vendedores contratados antes de 1988

SELECT NOMBRE
FROM REPVENTAS
WHERE CONTRATO < ’01-01-88’
GO

17. Mostrar las oficinas que están por debajo del 80% del objetivo

SELECT CIUDAD, VENTAS, OBJETIVO
FROM OFICINAS
WHERE VENTAS < (0.8 * OBJETIVO)
GO

18. Mostrar las oficinas que no están a cargo de Paola Marin

SELECT CIUDAD, DIR
FROM OFICINAS
WHERE DIR <> 108
GO

19. Mostrar a los vendedores que superaron sus cuotas

SELECT NOMBRE
FROM REPVENTAS
WHERE VENTAS > CUOTA
GO

20. Mostrar los clientes que tiene un límite de crédito entre 45000 y 60000

SELECT EMPRESA, LIMITE_CREDITO FROM CLIENTES
WHERE LIMITE_CREDITO BETWEEN 45000 AND 60000
GO

21. Mostrar a los vendedores que trabajan en New York, Denver, o Atlanta

SELECT NOMBRE, CUOTA, VENTAS FROM REPVENTAS
WHERE OFICINA_REP IN (11, 13, 22)
GO

22. Mostrar a los clientes cuya razón social comienza con S

SELECT EMPRESA, LIMITE_CREDITO
FROM CLIENTES
WHERE EMPRESA LIKE 'S%'
GO

23. Mostrar a los clientes cuya razón social incluye una Y en su nombre

SELECT EMPRESA, LIMITE_CREDITO
FROM CLIENTES

WHERE EMPRESA LIKE '%Y%'
GO

24. Mostrar los vendedores que no tiene asignada una oficina

SELECT NOMBRE
FROM REPVENTAS
WHERE OFICINA_REP IS NULL
GO

25. Mostrar los vendedores que tienen asignada una oficina

SELECT NOMBRE
FROM REPVENTAS
WHERE OFICINA_REP IS NOT NULL
GO

26. Mostrar a los vendedores que tienen ventas por debajo de sus cuotas o ventas

menores a 300000

SELECT NOMBRE, CUOTA, VENTAS
FROM REPVENTAS
WHERE VENTAS < CUOTA
 OR VENTAS < 300000
GO

27. Mostrar a los vendedores que tienen ventas por debajo de sus cuotas y ventas
menores a 300000

SELECT NOMBRE, CUOTA, VENTAS
FROM REPVENTAS
WHERE VENTAS < CUOTA
 AND VENTAS < 300000
GO

28. Mostrar la información de las oficinas ordenadas por Región

SELECT *
FROM OFICINAS
ORDER BY REGION
GO

29. Mostrar las oficinas ordenadas por las ventas en forma descendente:

SELECT CIUDAD, REGION, VENTAS
FROM OFICINAS
ORDER BY VENTAS DESC
GO

30. Mostrar las oficinas organizadas en forma descendente por el rendimiento de
ventas

SELECT CIUDAD, REGION, (VENTAS-OBJETIVO) AS RENDIMIENTO
FROM OFICINAS
ORDER BY 3 DESC

GO

31. Mostrar las oficinas organizadas por REGION y dentro de cada región por el

rendimiento de las VENTAS en forma descendente.

SELECT CIUDAD, REGION, (VENTAS-OBJETIVO) AS RENDIMIENTO
FROM OFICINAS
ORDER BY REGION, 3 DESC
GO

32. Indicar la cuota promedio y las ventas promedio de los vendedores

SELECT AVG(CUOTA), AVG(VENTAS)
FROM REPVENTAS
GO

Nótese que la función AVG primero suma todos los valores de la columna
especificada en el argumento y luego divide este total entre el número de filas.

33. Mostrar la suma total de las cuotas y de las ventas de todos los vendedores

SELECT SUM(CUOTA), SUM(VENTAS)
FROM REPVENTAS
GO

Nótese que la función SUM suma todos los valores de la columna especificada en
el argumento.

34. Mostrar el importe promedio del cliente de código 103

SELECT AVG(IMPORTE)
FROM PEDIDOS
WHERE CLIE = 2103
GO

35. Mostrar el mayor y menor monto de cuotas

SELECT MIN(CUOTA), MAX(CUOTA)
FROM REPVENTAS
GO
Nótese que la función MIN devuelve el menor valor de los datos almacenados en
la columna especificada en el argumento, mientras que MAX devuelve el mayor
valor.

36. Mostrar el número de clientes que existen.

SELECT COUNT(EMPRESA)
FROM CLIENTES
GO

Nótese que la función COUNT cuenta los registros en base al campo especificado
en el argumento.

37. Mostrar cuantos pedidos superaron el importe de los 25000

SELECT COUNT(IMPORTE)
FROM PEDIDOS
WHERE IMPORTE > 25000
GO

38. Mostrar cual es el promedio de pedidos por cada vendedor

SELECT REP, AVG(IMPORTE)
FROM PEDIDOS
GROUP BY REP
GO

Nótese que la cláusula GROUP BY permite agrupar los valores con la finalidad de
aplicarles alguna de las funciones agregadas (COUNT, SUM, AVG, MAX, MIN).
En este caso se devolverá un valor promedio de importes por cada uno de los
representantes de ventas.

39. Mostrar el rango de cuotas asignadas en cada oficina

SELECT OFICINA_REP, MIN(CUOTA), MAX(CUOTA)
FROM REPVENTAS
GROUP BY OFICINA_REP
GO

40. Mostrar el número de vendedores asignados a cada oficina

SELECT OFICINA_REP, COUNT(*)
FROM REPVENTAS
GROUP BY OFICINA_REP
GO

41. Mostrar los valores totales por cada cliente y por cada vendedor

SELECT REP, CLIE, SUM(IMPORTE)
FROM PEDIDOS
GROUP BY REP, CLIE
ORDER BY REP
GO

42. Mostrar un informe que calcule el total de importes por cada cliente, vendedor
ordenados por vendedor y luego por cliente

SELECT REP, CLIE, IMPORTE
FROM PEDIDOS
ORDER BY REP, CLIE
COMPUTE SUM(IMPORTE) BY REP, CLIE
COMPUTE SUM(IMPORTE) , AVG(IMPORTE) BY REP

Para poder emplear la cláusula COMPUTE debe ordenar primero la información.

43. Mostrar los promedios de ventas que superan los 30000

SELECT REP, AVG(IMPORTE)
FROM PEDIDOS

GROUP BY REP
HAVING SUM(IMPORTE) > 30000
GO

Nótese que la cláusula HAVING permite filtar los grupos generados por GRROUP
BY a diferencia de WHERE que filtra los registros que se agruparían.

Insert

Utilice la sentencia INSERT para agregar registros a una tabla.
La sintaxis reducida puede ser :

 INSERT [INTO] <Nombre de la Tabla> VALUES (Valor1,)
 GO

Recuerde que si el valor que intenta agregar a una de las columnas no cumple con
alguno de los constraints establecidos la operación abortará inmediatamente.

También es posible agregar múltiples filas a través del siguiente formato:

INSERT [INTO] <Nombre de la Tabla>
SELECT <lista de campos> FROM <Tabla>

Ejemplos:

Insertar los siguientes registros a la tabla de Clientes

INSERT Clientes Values (500, 'Mauricio Hidalgo', 104, 45000)
GO
INSERT Clientes Values (501, 'Gaby Mansilla', 104, 45000)
GO
INSERT Clientes Values (502, 'Cristina Donayre', 104, 45000)
GO
Select * From Clientes
GO

Update

Esta sentencia nos permite modificar la información de las tablas.

La sintaxis reducida puede ser:

 UPDATE <Nombre de la Tabla>
 SET <columna> = <Nuevo Valor>
 [WHERE <condición>]
 GO

Recuerde que si la actualización de una fila no cumple con una restricción o regla,
infringe la configuración de valores NULL o si el nuevo valor es de un tipo de datos
incompatible, se cancela la instrucción, se devuelve un error y no se actualiza ningún
registro.

Ejemplos
Actualizar la información del registro del cliente de código 502

UPDATE Clientes
SET empresa = 'Cristina Hidalgo'
WHERE num_clie = 502
GO

Select * From Clientes Where num_clie= 502
GO

A cada código sumarle 500 para los códigos menores que 1000

UPDATE Clientes
SET num_clie = num_clie + 500
WHERE num_clie < 1000
GO

Select * From Clientes
GO

Crear una tabla llamada MejoresCli, con los registros de los clientes con un limite de
crédito mayor que 60000, en esta nueva tabla incremente el límite de crédito en un 20%

SP_DBOPTION 'EJEMPLO', 'SELECT INTO/BULKCOPY', 'TRUE'
GO
SELECT *
INTO MEJORESCLI
FROM CLIENTES
WHERE LIMITE_CREDITO > 60000
GO
UPDATE MEJORESCLI
SET LIMITE_CREDITO = LIMITE_CREDITO * 1.2
GO
SELECT * FROM MEJORESCLI
GO
SP_DBOPTION 'EJEMPLO', 'SELECT INTO/BULKCOPY', 'FALSE'
GO

Delete

Las instrucciones DELETE y TRUNCATE TABLE remueven filas de una tabla.
La sintaxis de DELETE puede ser:

DELETE <Nombre de la tabla>

 [WHERE <Condición>]

Usar la instrucción DELETE para eliminar una o más filas de una tabla.
Tener en cuenta las siguientes consideraciones:
• El SQL Server borra todas las filas de una tabla a menos que se use la cláusula

WHERE.
• Cada fila borrada genera historia en el Log de Transacciones.

Ejemplos:

Eliminar el registro de código 1000 en la tabla de clientes

DELETE Clientes
WHERE Num_Clie = 1000
GO

SELECT * FROM CLIENTES
GO

Eliminar los registros cuyo código de cliente es menor que 2000

DELETE Clientes
WHERE Num_Clie < 2000
GO

SELECT * FROM CLIENTES
GO

Para eliminar registros puede utilizar también la sentencia TRUNCATE TABLE, que
resulta más rápida que DELETE puesto que no genera entradas en el log de
transacciones.

Su sintaxis es:

TRUNCATE TABLE <Nombre de la Tabla>

Ejemplo:

TRUNCATE TABLE MejoresCli
GO
Select * From MejoresCli
GO

Luego de probar este ejemplo elimine la tabla MejoresCli

DROP TABLE MejoresCli
GO

Recuperar información de dos o más tablas (Joins)

Para muchas de las consultas que los usuarios realizan sobre la data almacenada en
nuestra base de datos es necesario extraer información de más de una tabla, para ello es
necesario emplear los JOINS que representan una operación producir un conjunto de
resultados que incorporen filas y columnas de las tablas referidas en la consulta, esto lo
hace basándose en columnas comunes a las tablas.

Cuando se ejecutan los JOIN, SQL Server compara los valores de las columnas
especificadas fila por fila entonces usa los resultados de la comparación para combinar
los valores que califican como nuevas filas.

SELECT <lista de columnas>
FROM <tabla o vista >

[INNER | LEFT|RIGHT|FULL [OUTER]] JOIN
 <Tabla o Vista > ON <condición>

La lista de columnas puede incluir campos de diferentes tablas.
JOIN especifica las tablas incolucradas en la consulta.
ON, establece la condición de unión de las tablas, a través de campos comunes.

Cuando se implementa los JOIN, debe tener en cuenta las siguientes consideraciones:

• Especificar las condiciones del JOIN en base a Primary Key y a Foreign Key.
• Si una tabla tiene un Primary Key compuesta, se debe referenciar a la clave entera

en la cláusula ON del JOIN de tablas.
• Las columnas comunes a las tablas deben ser del mismo tipo de dato.
• Si dos o más columnas de las diferentes tablas que participan en el JOIN, tienen

el mismo nombre, deberá de calificar dichas columnas usando el formato
NombreTabla.Nombre.Columna.

• Limitar en lo posible el número de tablas en un JOIN, a más tablas, el SQL Server
se tomará más tiempo para resolver la consulta.

• La cláusula LEFT OUTER JOIN nos permite observar todos los registros de la
tabla que se referencia a la izquierda en una consulta, completa las filas con NULL
en caso no exista un valor almacenado en la tabla de la derecha.

• La cláusula RIGHT OUTER JOIN nos permite observar todos los registros de la
tabla que se referencia a la derecha en una consulta, completa las filas con NULL
en caso no exista un valor almacenado en la tabla de la izquierda.

• La cláusula FULL OUTER JOIN nos muestra la combinación de todos los registros
de la tabla de la izquierda con los registros de la tabla de la derecha.

Ejemplos:

• Mostrar los pedidos indicando el número de pedido, importe, nombre del cliente
y el límite de crédito

SELECT Num_Pedido, Importe, Empresa, Limite_credito
FROM PEDIDOS INNER JOIN CLIENTES
ON CLIE = NUM_CLIE
GO
• Muestra la lista de vendedores con especificación de la ciudad y región a la cual

pertenece

SELECT Nombre, Ciudad, Región
FROM REPVENTAS INNER JOIN OFICINAS
ON OFICINA_REP = OFICINA
GO

• Muestra la lista de oficinas con los nombres y títulos de sus directores.

SELECT Ciudad, Nombre, Titulo
FROM OFICINAS INNER JOIN REPVENTAS
ON DIR = NUM_EMPL
GO

• Muestra la lista de las oficinas con un objetivo superior a 600000

SELECT CIUDAD, NOMBRE, TITULO
FROM OFICINAS INNER JOIN REPVENTAS
ON DIR = NUM_EMPL AND OBJEIVO > 600000
GO

• Mostrar los pedidos indicando los importes y la descripción de los productos

SELECT NUM_PEDIDO, IMPORTE, DESCRIPCION
FROM PEDIDOS INNER JOIN PRODUCTOS
ON FAB = ID_FAB AND PRODUCTO = ID_PRODUCTO
GO
• Mostrar los pedidos superiores a 25000 indicando el nombre del vendedor que

tomó el pedido y el nombre del cliente

SELECT NUM_PEDIDO, IMPORTE, EMPRESA, NOMBRE
FROM PEDIDOS INNER JOIN CLIENTES
ON CLIE = NUM_CLIE
INNER JOIN REPVENTAS ON REP = NUM_EMPL
AND IMPORTE > 25000
GO

• Mostrar los pedidos superiores a 25000 indicando el nombre del vendedor

asignado al cliente y el nombre del cliente

SELECT NUM_PEDIDO, IMPORTE, EMPRESA, NOMBRE
FROM PEDIDOS INNER JOIN CLIENTES
ON CLIE = NUM_CLIE
INNER JOIN REPVENTAS ON REP_CLIE = NUM_EMPL
AND IMPORTE > 25000
GO

Desencadenadores

Un Desencadenador (Trigger) es un tipo especial de procedimiento almacenado que se
activa de forma controlada por sucesos antes que por llamadas directas. Los
desencadenadores (Triggers) están asociados a tablas.
Son una gran herramienta para controlar las reglas de negocio más complejas que una
simple integridad referencial, los desencadenadores (Triggers) y las sentencias que
desencadenan su ejecución trabajan unidas como una transacción.

El grueso de instrucciones de la definición del Desencadenador deben ser INSERT,
UPDATE o DELETE, aunque se puede utilizar SELECT, no es recomendable ya que el
usuario no espera que se le devuelva registros luego de agregar o modificar
información.
Los desencadenadores (Triggers) siempre toman acción después de que la operación fue
registrada en el log.

Para crear un Desencadenador puede utilizar el siguiente formato:

CREATE DESENCADENADOR <Nombre del Desencadenador>
ON <Nombre de la Tabla>
FOR <INSERT l UPDATE l DELETE>
AS

 Sentencias….
GO

Para graficar con un ejemplo la idea de un Desencadenador implementaremos uno,
piense en la siguiente situación:

Al agregar un nuevo pedido a la tabla de PEDIDOS se debe incrementar las ventas del
representante que concreto el pedido, así como también debe reducirse el número de
existencias.

Para ello debe crear el siguiente Desencadenador:

Use Ejemplo
GO
CREATE DESENCADENADOR NuevoPedido
ON Pedidos
FOR INSERT
AS

UPDATE RepVentas
SET VENTAS =VENTAS + INSERTED.IMPORTE
FROM REPVENTAS INNER JOIN INSERTED
ON REPVENTAS.NUM_EMPL = INSERTED.REP

UPDATE PRODUCTOS
SET EXISTENCIAS = EXISTENCIAS - INSERTED.CANT
FROM PRODUCTOS INNER JOIN INSERTED
ON PRODUCTOS.ID_FAB = INSERTED.FAB
AND PRODUCTOS.ID_PRODUCTO = INSERTED.PRODUCTO

GO

Para comprobar la ejecución de este Desencadenador ejecute las siguientes sentencias:

/* Antes de ejecutar un INSERT de prueba, mostraremos la información con respecto
 a un producto */

Select * From Productos Where Id_Fab= 'ACI' AND Id_Producto='41001'
GO

Rpta:

id_fab id_producto descripción precio existencias
ACI 41001Articulo Tipo 1 55.00 270

/* Ahora la de un representante de ventas */

Select nombre, cuota, ventas From RepVentas Where num_empl = 104
GO

Rpta:

nombre cuota ventas
Jorge Castro 200000 142594

/* Ahora agregaremos un pedido */

Insert Pedidos Values (111000, '5/15/1996', 2101, 104, 'ACI', '41001', 5, 275)
GO

/* Verifique los resultados anteriores */

Select * From Productos Where Id_Fab= 'ACI' AND Id_Producto='41001'
GO

Rpta:

id_fab id_producto descripcion precio existencias
ACI 41001Articulo Tipo 1 55.00 265

Select nombre, cuota, ventas From RepVentas Where num_empl = 104
GO

Rpta:

nombre cuota ventas
Jorge Castro 200000 142869

Como comprobo al agregar un nuevo pedido automáticamente el Desencadenador
funciona y actualiza las ventas para el representantes de ventas y reduce el número de
existencias en stock.

Bien en general cuando trabaja con desencadenadores (Triggers), tiene que recordar que
los CONSTRAINTS se verifican primero, de cumplirse con los datos solicitados se
ejecutará el Desencadenador.

Un Desencadenador para inserción de registros genera automáticamente una tabla en el
cache con la información que intenta añadir, esta tablita se denomina INSERTED y es a
través de esta tabla que se pueden hacer comparaciones en otras tablas.

Un Desencadenador para eliminación de registros genera automáticamente una tabla en
el cache con la información que intenta eliminar, esta tablita se denomina DELETED y
es a través de esta tabla que se pueden hacer comparaciones en otras tablas.

Si se trata de un Desencadenador para actualización se generan ambas tablas
INSERTED con los nuevos datos y DELETED con la información que será reemplazada.

Asignar Roles y/o Permisos – Comandos Dcl (Data Control Language)

Los comandos Data Control Language nos permiten asignar o negar derechos a los
usuarios sobre los distintos objetos de la base de datos. Para esto se deben haber
definido los usuarios que tendrán acceso a nuestra base de datos.

Los comandos DCL se pueden asignar por sentencias o por objetos.

Antes de empezar con las demostraciones, crearemos algunos inicios de sesión que nos
permitiran practicar, ejecute la siguiente secuencia de comandos:

USE MASTER
GO
Sp_AddInicio de sesión ‘Usuario01’, ‘contraseña’
GO
Sp_AddInicio de sesión ‘Usuario02’, ‘contraseña’
GO
Sp_AddInicio de sesión ‘Usuario03’, ‘contraseña’
GO
Sp_AddInicio de sesión ‘Usuario04’, ‘contraseña’
GO
Sp_AddInicio de sesión ‘Usuario05’, ‘contraseña’
GO

Luego de crear los inicios de sesión defina a cada uno de ellos como usuarios de la base
de datos Ejemplo, realice la siguiente secuencia de comandos:

Use Ejemplo
GO
Sp_GrantDBAccess ‘Usuario01’
GO
Sp_GrantDBAccess ‘Usuario02’
GO
Sp_GrantDBAccess ‘Usuario03’
GO
Sp_GrantDBAccess ‘Usuario04’
GO
Sp_GrantDBAccess ‘Usuario05’
GO

Creados los usuarios podemos asignar, revocar o negar permisos sobre cada uno de los
objetos de la base de datos.
Para ello emplearemos instrucciones tales como:

GRANT Permite asignar permisos sobre los objetos de una base de datos y/o
sentencias a utilizar

 GRANT <sentencia>
 ON Objeto
 TO Usuarios/Rol
 GO

REVOKE Remueve la asignación o negación del recurso de base de datos.

 REVOKE <sentencia>
 ON Objeto
 TO Usuarios/Rol
 GO

DENY Permite negar permisos sobre los objetos de una base de datos y/o
sentencias a utilizar

 DENY <sentencia>
 ON Objeto
 TO Usuarios/Rol
 GO

Ejemplos:

Ingrese al Analizador de Consultas con la cuenta del “sa” para poder asignar permisos
de lectura sobre las tablas pedidos y clientes a los usuarios USUARIO01 y
USUARIO04

GRANT Select
 ON Pedidos

 TO Usuario01, Usuario04
 GO

GRANT Select

 ON Clientes
 TO Usuario01, Usuario04
 GO

Debe negar el acceso de inserción y eliminación de registros sobre las tablas antes
mencionadas:

DENY INSERT, DELETE

 ON Pedidos
 TO Usuario01, Usuario04
 GO

DENY INSERT, DELETE

 ON Clientes
 TO Usuario01, Usuario04
 GO

Para comprobar las asignaciones realizadas, conectese al Analizador de Consultas con la
cuenta del Usuario01, tal como lo muestra la siguiente figura:

Una vez que ingreso compruebe las siguientes instrucciones:

Select * From Pedidos /* debe observar la información */
GO

Select * From Clientes
GO
/* SELECT permission denied on object 'Clientes', database 'Ejemplo', owner 'dbo'. */

Como observa el usuario sólo puede accesar a la información que se especificó con la
instrucción GRANT y no podrá realizar ninguna de las operaciones indicadas en la
sentencia DENY.

Otra de las características que brinda SQL Server es la posibilidad de crear roles, darles
permisos específicos a estos y luego agregarles usuarios.

Como demostración conéctese a Analizador de Consultas como “sa” y ejecute la
siguiente secuencia de instrucciones:

Use Ejemplo
GO
Sp_AddRole 'MisPermisos'
GO

A continuación deberá establecer los derechos que tendrán los integrantes de este rol:

GRANT SELECT, INSERT
ON CLIENTES
TO MIS PERMISOS
GO

DENY DELETE, UPDATE
ON CLIENTES
TO MISPERMISOS
GO

Ahora que ya estableció los derechos, debe agregar los usuarios que conformaran dicho
rol:

Sp_AddRoleMember ‘MISPERMISOS’, ‘USUARIO02’
GO
Sp_AddRoleMember ‘MISPERMISOS’, ‘USUARIO04’
GO

Ahora que completo la secuencia, conéctese al Analizador de Consultas con la cuenta
del USUARIO02 y ejecute la siguiente secuencia:

Use Ejemplo
GO
Select * From Clientes /* debe observar la información */
GO

Delete Clientes where rep_clie = 101 /* permiso negado */
GO

Ejecute la misma secuencia conéctandose como USUARIO04. Los resultados deben ser
los mismos.

Luego debe conectarse con el USUARIO03 y ejecutar:

Use ejemplo
go
Select * From Clientes /* permiso negado */

GO

Otra de las formas de crear un rol personalizado es a través del Administrador
Empresarial.

Para ello expanda la base de datos y haga clic derecho sobre la carpeta Funciones, pulse
sobre Nueva Función de base de Datos..., tal como lo muestra la pantalla:

Se presentará la siguiente caja de diálogo, indique el nombre y agregue a los usuarios
que considere necesarios:

Una vez que pulso Aceptar podrá asignarle todos los derechos que considere necesarios
para el rol, además que podrá agregar o retirar integrantes del rol. Estos roles son el
equivalente de trabajar con grupos de usuarios en Windows NT.

Todos los permisos que se especifiquen se guardan en la tabla SysProtects, donde
registran que usuarios tienen permisos para leer la información de determinadas tablas,
que usuarios no podrán realizar modificaciones y en general todo lo que tenga que ver
con los usuarios y roles.

Otra de las maneras que puede aprovechar para establecer derechos es a través del
Administrador Empresarial donde puede hacer un clic derecho sobre cada uno de los
usuarios y/o grupos de los cuales necesite establecer niveles de acceso.

Para ello expanda la carpeta de Usuarios en la base de datos que desea trabajar y haga
clic derecho sobre el usuario a asignar derechos, tal como lo muestra la figura siguiente:

Luego de pulsar clic en propiedades observará una caja de diálogo donde debe pulsar un
cic en el botón Permissions:

Luego de ello podrá observar una ventana donde podrá permitir o negar accesos sobre
los objetos. Tal como lo muestra la siguiente imagen:

EJERCICIOS PROPUESTOS

Crear la base de datos Matriculas con el archivo de datos de 10 Mb., tamaño máximo de
15 Mb. y un crecimiento de 1 Mb. El archivo de log debe tener inicialmente un tamaño
de 3 Mb, con un tamaño máximo de 5 Mb. y un crecimiento de 1 Mb.

Una vez creada la base de datos defina la creación de las siguientes tablas:

ALUMNOS

 CALIFICACIONES

 CATEGORIAS

 INSCRITOS

PROFESORES

 SECCIONES

Una vez que termine recupere el script Alumnado.sql, revise el script y ejecútelo con la
finalidad de poblar la base de datos.

Bien una vez que hemos creado las tablas y hemos cargado los valores, debemos
implementar las restricciones (CONSTRAINTS) correspondientes a las reglas de
integridad de cada tabla. Iniciaremos asignando las restricciones de tipo clave Principal
(PRIMARY KEY):

Use Matriculas
GO
ALTER TABLE Alumnos
ADD CONSTRAINT PK_Alumnos_codalu
PRIMARY KEY (codalu)
GO

ALTER TABLE Secciones
ADD CONSTRAINT PK_Secciones_sec
PRIMARY KEY (sec)
GO

ALTER TABLE Profesores
ADD CONSTRAINT PK_Profesores_codprofe
PRIMARY KEY (codprofe)
GO
ALTER TABLE Categorias
ADD CONSTRAINT PK_Categorias_categ
PRIMARY KEY (categ)
GO

ALTER TABLE Inscritos
ADD CONSTRAINT PK_Inscritos_alusec
PRIMARY KEY (codalu, sec)
GO

ALTER TABLE Calificaciones
ADD CONSTRAINT PK_Calificaciones_alusec
PRIMARY KEY (codalu, sec)
GO

Después de crear las definiciones para asegurar la unicidad de cada fila, nos toca
implementar las restrincciones de claves foráneas (FOREIGN KEY constraint).

ALTER TABLE Inscritos
ADD CONSTRAINT FK_Alumnos_codalu
FOREIGN KEY (codalu)
REFERENCES Alumnos(codalu)
GO

ALTER TABLE Inscritos
ADD CONSTRAINT FK_Secciones_sec
FOREIGN KEY (sec)
REFERENCES Secciones(sec)
GO

ALTER TABLE Secciones
ADD CONSTRAINT FK_Profesores_codprofe

FOREIGN KEY (codprofe)
REFERENCES profesores(codprofe)
GO

ALTER TABLE Calificaciones
ADD CONSTRAINT FK_Inscritos_codalu
FOREIGN KEY (codalu, sec)
REFERENCES Inscritos(codalu, sec)
GO

ALTER TABLE Profesores
ADD CONSTRAINT FK_Categorias_categ
FOREIGN KEY (categ)
REFERENCES Categorias(categ)
GO

Finalmente genere el diagrama de base de datos que debe observarse como el siguiente:

Para probar el funcionamiento de los constraints implementados ejecute las siguientes
instrucciones:

Insert Inscritos Values ('A001', '1116')
GO

/* El problema se debe a que la llave de inscripcion es duplicada por tanto podemos
deducir que el alumno ya estudio en esa aula. En este caso trabaja PK_Inscritos_alusec.
*/
Insert Calificaciones Values ('A003', '2315', 10,10)
GO

/* El problema es que el alumno no ha sido inscrito en la sección especificada, en este
caso trabaja el FK_Inscritos_codalu. */
Insert Secciones Values ('2318', 'D009', '5/15/2001', 600, 15, 40)

GO

/* El problema es que el código del profesor no esta registrado en la tabla
PROFESORES, en este caso trabaja el FK_Profesores_codprofe. */

Implementaremos un Desencadenador para inserción de registros en la tabla Inscritos,
de forma que al momento de agregar un registro se valide la disponibilidad de vacantes,
de ser así actualice el número de vacantes en la tabla secciones y agregar un registro en
la tabla Calificaciones.

Ejecute el siguiente código:

Use Matriculas
GO
CREATE DESENCADENADOR Inscribe_Alumno
ON Inscritos
FOR INSERT
As
 BEGIN
 DECLARE @Vacantes int
 SELECT @Vacantes = (Select Vacantes From Secciones INNER JOIN Inserted
On Secciones.Sec = Inserted.Sec)
 IF @Vacantes = 0
 BEGIN
 RAISERROR ('No hay vacantes en el aula', 10, 1)
 ROLLBACK TRANSACTION
 END
 ELSE
 BEGIN
 INSERT Calificaciones
 SELECT Inserted.Codalu, Inserted.Sec, 0, 0 From Inserted

 UPDATE Secciones
 SET Vacantes = Vacantes - 1
 FROM Secciones JOIN Inserted On Secciones.Sec = Inserted.Sec
 END
 END
GO

Mostrar la información de las secciones

Select * From Secciones
GO

Tomemos como referencia la sección 1116 pues tiene una sola vacante inscribamos al
alumno A019 en dicha sección

Insert Inscritos Values ('A019', '1116')
GO

Verifique el número de vacantes en la 1116

Select * From Secciones Where Sec='1116' -- Ahora es 0
GO

Revisemos la tabla Calificaciones

Select * From Calificaciones Where codalu = 'A019'
GO

Intentemos agregar otro alumno a la sección 1116

Insert Inscritos Values ('A016', '1116')
GO

En este último intento debe mostrarse el mensaje “No hay vacantes”

Propuesto

Implementar el Desencadenador RetiraInscripcion sobre la tabla Inscritos el cual debe
ejecutarse el eliminar un registro de la tabla Inscritos, este Desencadenador debe
eliminar la entrada generada en la tabla Calificaciones además de incrementar el número
de vacantes de la sección de la cual se retira el alumno.

Implementar el Desencadenador CambioSeccion sobre la tabla Inscritos, este se
ejecutará al actualizar la información del inscrito con un cambio de sección, en este caso
se verificará si en la nueva sección existen vacantes de haberlo debe actualizar el
número de vacantes incrementando su valor en la antigua sección y reduciendolo en la
nueva sección.

Ahora para practicar los querys implementaremos las siguientes consultas:

Mostrar la lista de alumnos de la sección 2315 ordenados alfabéticamente

SELECT Pat, Mat, Nom
From Alumnos Inner Join Inscritos
On Alumnos.codalu = Inscritos.codalu
 AND Inscritos.Sec = '2315'
Order By Pat, Mat, Nom
GO

El segundo carácter de la sección indica el curso tomando en cuenta lo siguiente:
[1] V.Basic [2] V.Fox [3] SQL Server.
Mostrar un reporte que muestre el código del alumno, el curso que estudia y el
promedio

SELECT NomApe = (Nom + ' ' + Pat + ' ' + Mat),

 Curso = Case
 When SubString(Inscritos.Sec, 2, 1)='1'
 Then 'V.Basic'
 When SubString(Inscritos.Sec, 2, 1)='2'
 Then 'V.Fox'
 When SubString(Inscritos.Sec, 2, 1)='3'
 Then 'SQL Server'
 End,
 Promedio = (N1+N2)/2
From Alumnos INNER JOIN Inscritos
On Alumnos.codalu = Inscritos.codalu
 INNER JOIN Calificaciones
 On Inscritos.codalu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.sec
GO

Mostrar todos los alumnos con indicación de los cursos que estudian con
indicación de sus promedios en caso tenerlo.

SELECT NomApe = (Nom + ' ' + Pat + ' ' + Mat),
 Curso = Case
 When SubString(Inscritos.Sec, 2, 1)='1'
 Then 'V.Basic'
 When SubString(Inscritos.Sec, 2, 1)='2'
 Then 'V.Fox'
 When SubString(Inscritos.Sec, 2, 1)='3'
 Then 'SQL Server'
 End,
 Promedio = (N1+N2)/2
From Alumnos INNER JOIN Inscritos
On Alumnos.codalu = Inscritos.codalu
 LEFT OUTER JOIN Calificaciones
 On Inscritos.codalu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.sec
GO

Mostrar el promedio general de los alumnos que completaron los tres cursos

SELECT NomApe = (Max(Nom) + ' ' + Max(Pat) + ' ' + Max(Mat)),
 PromedioFinal = AVG((N1+N2)/2)
From Alumnos INNER JOIN Inscritos
On Alumnos.codalu = Inscritos.codalu
 INNER JOIN Calificaciones
 On Inscritos.codalu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.sec
Group By Inscritos.codalu
Having count(Inscritos.codalu) = 3
GO

Mostrar el número de alumnos que estudia en cada sección

Select Sec, Alumnado=Count(codalu)
From Inscritos
Group By sec
GO

Mostrar a los alumnos cuyo promedio es mayor que 14, indique sección, curso y
profesor

SELECT NomApe = (Nom + ' ' + Pat + ' ' + Mat), Inscritos.Sec,
 Curso = Case
 When SubString(Inscritos.Sec, 2, 1)='1'
 Then 'V.Basic'
 When SubString(Inscritos.Sec, 2, 1)='2'
 Then 'V.Fox'
 When SubString(Inscritos.Sec, 2, 1)='3'
 Then 'SQL Server'
 End,
 Promedio = (N1+N2)/2
From Alumnos INNER JOIN Inscritos
On Alumnos.codalu = Inscritos.codalu
 LEFT OUTER JOIN Calificaciones
 On Inscritos.codalu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.sec
Where (N1+N2)/2 > 14
GO

Implementar Vistas y Procedimientos Almacenados

Objetivos:

• Entender que es una vista

• Entender que es un Procedimientos Almacenados

• Implementar Vistas y procedimientos

Temas:

1. ¿Qué es una vista?
2. Agregar, Modificar y Eliminar vistas
3. ¿Qué es un Procedimientos Almacenados?
4. Agregar, Modificar y Eliminar Procedimientos Almacenados
5. Funciones de usuario en SQL Server 2000

¿Qué es una vista?

Una vista es una tabla virtual que muestra la información relevante para el usuario
además que permite encapsular la complejidad de su implementación.

Una vista puede mostrar toda la información de una tabla o de la integración de
información de más de una tabla. Es decir se puede afirmar que las vistas trabajan como
especie de filtros de las tablas subyacentes que brindan la información presentada por la
vista.

Entre las principales ventajas del empleo de las vistas podemos mencionar:

• Permite mostrar un subconjunto de filas y/o columnas de una tabla.
• Permite mostrar información de más de una tabla.
• Permite realizar uniones entre dos o más tablas.
• Permite mostrar informes resumen.

• Puede definirse a partir de otras vistas

Como observa en la representación anterior los usuarios podrán observar sólo las
columnas que son importantes para su trabajo, esto da la ventaja de que no tengan que
manipular datos innecesarios para su labor.
Otra de las ventajas de las vistas es que pueden generarse a partir de consultas
distribuidas entre origenes de datos heterogéneos, de tal manera que los usuarios
invocan a las vistas en lugar de estar digitando complejos querys.

Antes de implementar sus vistas tenga en cuenta las siguientes consideraciones:

Sólo pueden crearse vistas en la base de datos activa, aunque las tablas y/o vistas que
son parte de la definición puedan encontrarse en distintas bases de datos.

• Se pueden crear vistas a partir de otras vistas.
No se pueden asociar defaults, rule y/o desencadenadores (Triggers) a una
vista.

• La consulta que forma la vista no puede incluir las cláusulas ORDER BY,
COMPUTE o COMPUTE BY
No se pueden construir índices sobre las vistas

• No se pueden crear vistas temporales, ni vistas basdas en tablas temporales.
Cada una de las columnas empleadas en la vista debe tener un encabezado.

Agregar, Modificar y Eliminar una Vista

Crear Vistas

Para crear vistas podemos emplear el Administrador Empresarial, realizando el
siguiente proceso:

Expanda la base de datos Matriculas y haga clic derecho sobre la carpeta Vistas, luego
pulse clic sobre la opción Nueva Vista... tal como lo indica la siguiente figura:

Luego de ello aparecerá una pantalla como la siguiente:

Otra de las formas de crear una vista es a partir de la sentencia CREATE VIEW, cuya
sintaxis es:

CREATE VIEW <Nombre de la vista> [Encabezado1,]
[WITH ENCRYPTION]
AS
 Sentencias Select
 [WITH CHECK OPTION]

La cláusula WITH ENCRYPTION, permite ocultar la implementación de la vista, la
cual puede ser vista con el stored procedure del sistema sp_helptext o desde la tabla del
sistema syscomments.

La cláusula WITH CHECK OPTION, garantiza que los cambios hechos desde la vista
puedan ser observados una vez que la operación finaliza.

Ejemplos:

Utilice el Administrador Empresarial para definir una vista con las características
que muestra la ilustración:

Una vez que termine de diseñar la vista pulse CTRL-F4, conteste afirmativamente a la
pregunta y digite el nombre Relación de Promedios, pulse Enter para finalizar.

Para comprobar la creación de la vista en el Analizador de Consultas digite la siguiente
instrucción:

Select * From [Relacion de Promedios]
GO

Ver la sentencia que implementa la vista:

Sp_HelpText [Relacion de Promedios]
GO

Ver las columnas que se presentan en la vista

Sp_Depends [Relación de Promedios]
GO

Desde el Query Anallyzer debe crear una vista que nos permita mostrar un informe
resumen por sección que muestre la sección, el nombre del profesor, el total de
alumnos, el mayor y menor promedio, el promedio de la sección y el monto acumulado
de las pensiones.

CREATE VIEW Resumen
AS
 Select
 Inscritos.Sec As Seccion,
 MAX(nombre) As Profesor,
 Count(Inscritos.Codalu) As Alumnado,
 Max((N1+N2)/2) As MayorPromedio,
 Min((N1+N2)/2) As MenorPromedio,
 Avg((N1+N2)/2) As PromedioSec,
 Sum(Pension) As Acumulado
From
 Inscritos INNER JOIN Calificaciones
 On Inscritos.codAlu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.Sec
 INNER JOIN Secciones On Inscritos.Sec = Secciones.Sec
 INNER JOIN Profesores On Secciones.CodProfe = Profesores.CodProfe
Group by Inscritos.Sec
GO

Compruebe la información que devuelve la vista:

Select * From Resumen
GO

Mostrar la implementación de la vista:

Sp_HelpText Resumen
GO

Modificar Vistas

Para modificar la vista utilice la siguiente sintaxis:

ALTER VIEW <Nombre de la Vista> [(Encabezado1, ...)]
[WITH ENCRYPTION]

AS
 <Sentencia SELECT>
[WITH CHECK OPTION]

Para poder comprobar el empleo de esta sentencia, ejecute el siguiente comando:

ALTER VIEW RESUMEN
WITH ENCRYPTION
AS
 Select
 Inscritos.Sec As Seccion,
 MAX(nombre) As Profesor,
 Count(Inscritos.Codalu) As Alumnado,
 Max((N1+N2)/2) As MayorPromedio,
 Min((N1+N2)/2) As MenorPromedio,
 Avg((N1+N2)/2) As PromedioSec,
 Sum(Pension) As Acumulado
From
 Inscritos INNER JOIN Calificaciones
 On Inscritos.codAlu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.Sec
 INNER JOIN Secciones On Inscritos.Sec = Secciones.Sec
 INNER JOIN Profesores On Secciones.CodProfe = Profesores.CodProfe
Group by Inscritos.Sec
GO

Ahora muestre la implementación de la vista con el siguiente comando:

Sp_HelpText Resumen
GO

Como observará en el panel de resultados ahora ya no se muestra la implementación de
la vista.

Lo mismo ocurrirá si consulta la información de la tabla del sistema SysComments.

Select * From SysComments
GO

Eliminar Vistas

Para eliminar una vista emplear la siguiente sintaxis:

DROP VIEW <Nombre de la vista> [,...n]

Como ejemplo podría utilizar la siguiente instrucción:

DROP VIEW [Relacion de Promedios]
GO

Select * From [Relacion de Promedios]
GO

Procedimientos Almacenados

Un stored procedure es una colección de sentencias del Transact-SQL las cuales
organizadas lógicamente resuelven algunas de las operaciones transaccionales que
requieren los usuarios, estos procedimientos se almacenan en la base de datos. Los
procedimientos almacenados soportan el empleo de variables declaradas por el usuario,
sentencias para toma de decisiones entre otras características.

En SQL Server existen 5 tipos de procedimientos almacenados:

• Procedimientos del sistema, son los que se encuentran almacenados en la base
de datos master y algunas en las bases de datos de usuario, estos procedimientos
almacenados brindan información acerca de los datos y características del
servidor. En el nombre usan como prefijo sp_.

• Procedimientos locales, son los procedimientos almacenados en una base de
datos.

• Procedimientos temporales, son procedimientos locales y sus nombres empiezan
con los prefijos # o ##, dependiendo si se desea que sea un procedimiento global
a todas las conecciones o local a la coneccion que lo define.

• Procedimientos remotos, son procedimientos almacenados en servidores
distribuidos.

• Procedimientos extendidos, son aquellos que nos permiten aprovechar las
funcionalidades de otras librerías externas a SQL Server. Estos procedimientos
usan el prefijo xp_ y se encuentran en la base de datos master.

Entre las principales características de un procedimiento almacenado podemos
mencionar:

• Aceptar parámetros de entrada y devolver varios valores en forma de parámetros

de salida al lote o al procedimiento que realiza la llamada.
• Contener instrucciones de programación que realicen operaciones en la base de

datos, incluidas las llamadas a otros procedimientos.
• Devolver un valor de estado que indica si la operación se ha realizado

correctamente o habido un error (y el motivo del mismo).
• Permiten una ejecución más rápida, ya que los procedimientos son analizados y

optimizados en el momento de su creación, y es posible utilizar una versión del
procedimiento que se encuentra en la memoria después de que se ejecute por
primera vez.

• Pueden reducir el tráfico de red.
• Pueden utilizarse como mecanismo de seguridad, ya que se puede conceder

permisos a los usuarios para ejecutar un procedimiento almacenado, incluso si no
cuentan con permiso para ejecutar directamente las instrucciones del
procedimiento.

Crear, Modificar y Eliminar un Procedimiento Almacenado

Crear Procedimientos Almacenados

Para crear un stored procedure en SQL Server tiene la posibilidad de utilizar múltiples
formas entre ellas un asistente para la creación de procedimientos para ingresar,
eliminar y actualizar información en las tablas.

Siga las instrucciones para aprovechar el asistente:

1. En el menú Herramientas haga clic sobre la opción Asistentes, y seleccione la

opción que muestra la figura:

2. Luego de pulsar Aceptar, aparecerá una pantalla de bienvenida al asistente

3. Pulse Siguiente y tendrá la posibilidad de elegir que base de datos utilizará.

4. Pulse Siguiente y marque las casillas que indican que procedimientos creará.

Luego de pulsar Siguiente aparecerá una pantalla que indica el fin de los pasos
requeridos para crear los procedimientos.

5. Al pulsar Finalizar aparecerá un mensaje indicando cuantos procedimientos se han

creado.

También puede crear los procedimientos con la sentencia CREATE PROCEDURE.

CREATE PROC[EDURE] <Nombre Procedimiento>
[
{@parámetro tipoDatos} [= predeterminado] [OUTPUT]
]
[,...n]
[WITH
{
RECOMPILE
| ENCRYPTION
}
]
AS
Sentencias SQL [...n]

Argumentos

@parámetro
El usuario puede tener hasta máximo de 1024 parámetros. El nombre del
parámetro debe comenzar con un signo (@) . Los parámetros son locales al
procedimiento.

default
Es un valor predeterminado para el parámetro.

OUTPUT
Indica que se trata de un parámetro de salida. El valor de esta opción puede
devolverse a EXEC[UTE]. Utilice los parámetros OUTPUT para devolver
información al procedimiento que llama. Los parámetros de texto no se
pueden utilizar como parámetros OUTPUT.

{RECOMPILE | ENCRYPTION | RECOMPILE, ENCRYPTION}
RECOMPILE indica que SQL Server no almacena en la caché un plan para
este procedimiento, con lo que el procedimiento se vuelve a compilar cada
vez que se ejecuta. Utilice la opción RECOMPILE cuando emplee valores
atípicos o temporales para no anular el plan de ejecución que está
almacenado en la memoria caché.
ENCRYPTION indica que SQL Server codifica la entrada de la tabla
syscomments que contiene el texto de la instrucción CREATE
PROCEDURE.

Entre otras observaciones podemos mencionar:

• El tamaño máximo de un procedimiento es de 128 Mb.
• Un procedimiento sólo puede crearse en la base de datos actual.
• Se puede crear otros objetos de base de datos dentro de un procedimiento

almacenado. Puede hacer referencia a un objeto creado en el mismo
procedimiento almacenado, siempre que se cree antes de que se haga referencia
al objeto.

• Puede hacer referencia a tablas temporales dentro de un procedimiento
almacenado.

Si crea una tabla temporal privada dentro de un procedimiento almacenado, la tabla
temporal existirá únicamente para los fines del procedimiento; desaparecerá cuando éste
finalice.
Si ejecuta un procedimiento almacenado que llama a otro procedimiento almacenado, el
procedimiento al que se llama puede tener acceso a todos los objetos creados por el
primer procedimiento, incluidas las tablas temporales.
Si se ejecuta un procedimiento almacenado remoto que realiza cambios en un servidor
SQL Server remoto, los cambios no se podrán deshacer. Los procedimientos
almacenados remotos no intervienen en las transacciones.
Las siguientes instrucciones no se pueden emplear dentro de un procedimiento.

CREATE
DEFAULT

CREATE
DESENCADENADOR

CREATE
PROCEDURE CREATE VIEW

CREATE RULE

Para crear un procedimiento desde el Analizador de Consultas ejecute las siguientes
instrucciones:

Use Matriculas
GO
CREATE PROCEDURE ListaPromedios
as
SELECT NomApe = (Nom + ' ' + Pat + ' ' + Mat), Inscritos.Sec,
 Curso = Case
 When SubString(Inscritos.Sec, 2, 1)='1'
 Then 'V.Basic'
 When SubString(Inscritos.Sec, 2, 1)='2'
 Then 'V.Fox'
 When SubString(Inscritos.Sec, 2, 1)='3'
 Then 'SQL Server'
 End,
 Promedio = (N1+N2)/2
From Alumnos INNER JOIN Inscritos
On Alumnos.codalu = Inscritos.codalu
 INNER JOIN Calificaciones
 On Inscritos.codalu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.sec

GO

Para poder ejecutar el procedimiento emplearemos la siguiente sintaxis:

EXEC ListaPromedios
GO

Para ver la información de la implementación del procedimiento almacenado:

Sp_HelpText ListaPromedios
GO

Para ver cuales son las columnas que producen la información presentada por el
procedimiento:

Sp_Depends ListaPromedios
GO

Modificar Procedimientos Almacenados

Si se desea modificar el procedimiento almacenado utilice la siguiente sintaxis:

ALTER PROC[EDURE] <Nombre Procedimiento>
[
{@parámetro tipoDatos} [= predeterminado] [OUTPUT]
]
[,...n]
[WITH
{
RECOMPILE
| ENCRYPTION
}
]
AS
Sentencias SQL [...n]

Para ver un ejemplo realice lo siguiente:

ALTER PROCEDURE ListaPromedios
WITH ENCRYPTION
as
SELECT NomApe = (Nom + ' ' + Pat + ' ' + Mat), Inscritos.Sec,
 Curso = Case
 When SubString(Inscritos.Sec, 2, 1)='1'
 Then 'V.Basic'
 When SubString(Inscritos.Sec, 2, 1)='2'
 Then 'V.Fox'
 When SubString(Inscritos.Sec, 2, 1)='3'
 Then 'SQL Server'
 End,
 Promedio = (N1+N2)/2
From Alumnos INNER JOIN Inscritos
On Alumnos.codalu = Inscritos.codalu
 INNER JOIN Calificaciones
 On Inscritos.codalu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.sec
GO

Ejemplo:

Ahora implementaremos un procedimiento que muestre el promedio de cada alumno de
acuerdo a la sección indicada en el argumento:

CREATE PROCEDURE PromPorSeccion
(@seccion char(4) = NULL)
as

IF @seccion IS NULL
 BEGIN
 RAISERROR ('Debe indicar un codigo', 10, 1)
 RETURN
 END
IF NOT EXISTS (Select Sec From Inscritos Where Sec=@seccion)
 BEGIN
 RAISERROR ('La seccion no tiene alumnos', 10, 1)
 RETURN
 END
SELECT NomApe = (Nom + ' ' + Pat + ' ' + Mat), Inscritos.Sec,
 Curso = Case
 When SubString(Inscritos.Sec, 2, 1)='1'
 Then 'V.Basic'
 When SubString(Inscritos.Sec, 2, 1)='2'
 Then 'V.Fox'
 When SubString(Inscritos.Sec, 2, 1)='3'
 Then 'SQL Server'
 End,
 Promedio = (N1+N2)/2
From Alumnos INNER JOIN Inscritos
On Alumnos.codalu = Inscritos.codalu
 INNER JOIN Calificaciones
 On Inscritos.codalu = Calificaciones.codalu
 AND Inscritos.sec = Calificaciones.sec
WHERE Inscritos.Sec = @Seccion
GO

Para ejecutar realizaremos lo siguiente:

EXEC PromPorSeccion
GO
EXEC PromPorSeccion ‘9090’
GO
EXEC PromPorSeccion ‘2315’
GO
Sp_HelpText PromPorSeccion
GO
Sp_Depends PromPorSeccion
GO

Eliminar Procedimientos Almacenados

Para eliminar un procedimiento utilice el siguiente formato:

DROP PROCEDURE <Nombre del procedimiento>

Funciones en SQL Server 2000 (1/2)

Microsoft agregó nuevas características a su producto SQL Server 2000, y una de las
más sobresalientes es sin duda la capacidad de implemtentar funciones definidas por el
usuario. Esta característica ayudará a solucionar los problemas de reutilización del
código y dará mayor flexibilidad al programar las consultas de SQL.

Tipos de funciones

El servidor 2000 del SQL utiliza tres tipos de funciones: las funciones escalares, tabla
en linea , funciones de tabla de multi sentencias. Los tres tipos de funciones aceptan
parámetros de cualquier tipo excepto el rowversion. Las funciones escalares devuelven
un solo valor, tabla en linea y Multisentencias devuelven un tipo de dato tabla.

Funciones Escalares

Las funciones escalares devuelven un tipo de los datos tal como int, money, varchar,
real, etc. Pueden emplearse en cualquier lugar incluso incorporada dentro de sentencias
SQL. La sintaxis para una función escalar es la siguiente:

CREATE FUNCTION [propietario] Nombre_de_Función
([{ @parametro parametro_scalar [= default]} [,..n]])
RETURNS tipo_de_dato_scalar_de_retorno
[WITH <opción > >::={SCHEMABINDING | ENCRYPTION]
[AS]
BEGIN
Código de la función
RETURN expresión_scalar
END

Como ejemplo una función sencilla para obtener un número elevado al cubo:

CREATE FUNCTION dbo.Cubo(@Numero float)
RETURNS float
AS
BEGIN
RETURN(@fNumero * @fNumero * @fNumero)
END

Otra característica interesante es que las funciones de usuario soportan llamadas
recursivas, como se muestra en el siguiente ejemplo, que calcula el factorial de un
número:

CREATE FUNCTION dbo.Factorial (@Numero int)
RETURNS INT

AS
BEGIN
DECLARE @i int

IF @Numero <= 1
SET @i = 1
ELSE
SET @i = @Numero * dbo.Factorial(@Numero - 1)
RETURN (@i)
END

Funciones de tabla en línea

Las funciones de tabla en linea son las funciones que devuelven la salida de una simple
declaración SELECT. La salida se puede utilizar adentro de joins o querys como si
fuera un tabla de estándar. La sintaxis para una función de tabla en linea es como sigue:

CREATE FUNCTION [propietario] Nombre_de_Función
 ([{ @parametro tipo_parametro_scalar [= default]} [,..n]])
RETURNS TABLE
[WITH <opcion >::={SCHEMABINDING | ENCRYPTION}]
RETURN [(] sentencia_select [)]

Una función InLine podría retornar los autores de un estado en particular:

CREATE FUNCTION dbo.AutoresPorEstado (@State char(2))
RETURNS TABLE
AS
RETURN (SELECT * FROM Authors WHERE state = @cState)

Las funciones de tabla de multi sentencias

Son similares a los procedimientos almacenados excepto que devuelven una tabla. Este
tipo de función se usa en situaciones donde se requiere más lógica y proceso. Lo que
sigue es la sintaxis para una función de tabla de multi sentencias:

CREATE FUNCTION [propietario] Nombre_de_Función
([{ @parametro tipo_parametro_scalar [= default]} [,..n]])
RETURNS TABLE
[WITH <opción> >::={SCHEMABINDING | ENCRYPTION]
[AS]
BEGIN
Código de la función
RETURN
END

Llamando Funciones

SQL 2000 proporciona algunas funciones definidas por el usuario a nivel sistema en la
base de datos Master. Estas funciones del sistema se invocan con un sintaxis levemente
distinta a las que usted puede crear. Las funciones del sistema que devuelven un tabla
tienen la sintaxis siguiente:

Nombre de Funcion([argumento_expr], [,...])

Las funciones escalares y las de conjunto de filas son invocadas con el siguiente
formato:

[BD] propietario. Funcion ([argumento_expr], [,...])

Limitaciones

Las funciones definidas por el usuario tienen algunas restricciones. No todas las
sentencias SQL son válidas dentro de una función. Las listas siguientes enumeran las
operaciones válidas e inválidas de la funciónes:

Válido:

Las sentencias de asignación
Las sentencias de Control de Flujo
Sentencias SELECT y modificacion de variables locales
Operaciones de cursores sobre variables locales Sentencias INSERT, UPDATE,
DELETE con ariables Locales

Inválidas:

Armar funciones no determinadas como GetDate()
Sentencias de modificacion o actualizacion de tablas o vistas
Operaciones CURSOR FETCH que devuelven datos del cliente

Columnas computadas

Las funciones escalares se pueden utilizar para crear columnas calculadas en una
definicion de tabla. Los argumentos de las funciones calculadas, columnas dla fichala,
constantes, o funciones incorporadas. Este ejemplo muestra un tabla que utilice una
función del volumen para calcular el volumen de un envase

CREATE FUNCTION dbo.Volume (@Height decimal(5,2),
@Length decimal(5,2),

@Width decimal(5,2))
RETURNS decimal (15,4)
AS
BEGIN
RETURN (@dHeight * @dLength * @dWidth)
END

CREATE TABLE dbo.Container
(
ContainerID int NOT NULL PRIMARY KEY,
MaterialID int NOT NULL REFERENCES Material(MaterialID),
ManufacturerID int NOT NULL REFERENCES Manufacturer(ManufacturerID)
Height decimal(5,2) NOT NULL,
Length decimal(5,2) NOT NULL,
Width decimal(5,2) NOT NULL,
Volume AS (dbo.Volume(Height, Length, Width)
)

Glosario
abstract data type (ADT)

Es un tipo de dato definido por el usuario en el cual se encapsula un rango de valores de
datos y funciones. The functions are both defined on, y operadas en el set of values

alternate key

Columnas o columnas cuyo valor únicamente identifica a un registro en una tabla y no
son llaves primarias en una columna.

business rule

Sentencia escrita en la cual se especifica como debe ser la información del sistema o
como debe ser estructurada para soportar los negocios necesarios.

clustered index

Indice en el cual el orden físico y el orden lógico(indexado) es el mismo.

column

Estructura de datos que contiene un dato individual por registro, equivalente a un campo
en un modelo de Base de Datos.

constraint

Relación que fuerza a verificar requerimientos de datos, valores En forma
predeterminada o integridad referencial en una tabla o columna.

domain

 Predetermina tipos de datos usados mas frecuentemente por los data item

extended atribute

Información Adicional que completa la definición de un objeto para la documentación
propuesta o para el uso de una aplicación externa como un Lenguaje de Cuarta
Generación(4GL)

FOREIGN KEY

Columna o columnas cuyo valores son dependientes y han sido migrados de una llave
primaria o una llave alternativa desde otra tabla.

4gl

Aplicación externa basada en un Lenguaje de Cuarta Generación, usada usualmente
para generar Aplicaciones Cliente / Servidor.

index

Estructura de datos basados sobre una llave, cuya finalidad es definir la velocidad de
acceso a los datos de una tabla y controlar valores únicos.

odbc
Open Database Connectivity (ODBC), interface la cual provee a PowerDesigner acceso
a la data de un Manejador de Base de Datos (DBMS)

odbc driver

Parte de el Open Database Connectivity (ODBC), interface que procesa llamadas de
funciones del ODBC, recibe requerimientos SQL de un especifico data source, y
retorna resultados a la aplicación.

PRIMARY KEY

Columna o columnas cuyos valores son identificados como valores únicos en el
registro de una tabla.

REFERENCE

Relación entre una tabla padre y una tabla hijo. Una referencia puede relacionar tablas
por llaves compartidas o por columnas especificas.

REFERENCIAL INTEGRITY

Reglas de consistencia de datos, específicamente las relaciones existentes entre primary
keys y foreign keys de tablas diferentes.

TABLE

Colección de registros que tienen columnas asociadas.

DESENCADENADOR

Forma especial de Procedimientos Almacenados, el cual toma efecto cuando se
realiza una transacción SQL en la Base de Datos ya sea un UPDATE, INSET o
DELETE.

Referencia del Transact-SQL

TIPOS DE VALOR

Utilizar datos char y varchar

Los tipos de datos char y varchar almacenan datos compuestos de:

• Caracteres en mayúsculas o minúsculas, como, por ejemplo, a, b y C.
• Numerales, como 1, 2 ó 3, por ejemplo.
• Caracteres especiales, como, por ejemplo, @, & y !.

Los datos char o varchar pueden ser un carácter individual o una cadena de hasta 8.000
caracteres.

Las constantes de caracteres deben incluirse entre comillas simples (‘) o comillas dobles
(“). Siempre se puede incluir una constante de caracteres entre comillas simples;
además, ésta es una práctica recomendable. Cuando la opción QUOTED IDENTIFIER
está activada, algunas veces no se permite incluir una constante de carácter entre
comillas dobles.

A continuación se muestra un ejemplo de Transact-SQL donde se asigna un valor a una
variable de carácter.

DECLARE @MyCharVar CHAR(25)
SET @MyCharVar = 'Ricardo Adocicados'

Cuando use comillas simples para delimitar una constante de carácter que contenga una
comilla simple incrustada, utilice dos comillas simples para representar la comilla
simple incrustada, por ejemplo:

SET @MyCharVar = 'O''Leary'

Si los datos que se van a almacenar tienen una longitud mayor que el número de
caracteres permitido, se truncan los datos. Por ejemplo, si una columna se define como
char(10) y en la columna se almacena el valor “Esta es una cadena de caracteres
realmente larga”, Microsoft® SQL Server™ trunca la cadena de caracteres a “Esta es
un”.

El tipo de datos char es un tipo de datos de longitud fija cuando se especifica la
cláusula NOT NULL. Si en una columna char NOT NULL se inserta un valor más
corto que la longitud de la columna, el valor se rellena a la derecha con blancos hasta
completar el tamaño de la columna. Por ejemplo, si una columna se define como
char(10) y el dato que se va a almacenar es “música”, SQL Server almacena este dato
como “música____” donde “_” indica un blanco.

El tipo de datos varchar es de longitud variable. Los valores más cortos que el tamaño
de la columna no se rellenan a la derecha hasta completar el tamaño de la misma. Si la
opción ANSI_PADDING estaba desactivada cuando se creó la columna, cualquier

blanco a la derecha será recortado de los valores de carácter almacenados en la
columna. Si ANSI_PADDING estaba activado cuando se creó la columna, los blancos a
la derecha no se recortarán.

Si ANSI_PADDING está activado cuando se crea una columna char NULL, se
comporta igual que una columna char NOT NULL y los valores son rellenados a la
derecha hasta el tamaño de la columna. Si ANSI_PADDING está desactivado cuando se
crea la columna char NULL, se comporta igual que una columna varchar con
ANSI_PADDING desactivado, y se recortan los blancos de relleno.

La función CHAR se puede usar para convertir un código entero a un carácter ASCII.
Esto resulta de utilidad cuando se intenta especificar caracteres de control como, por
ejemplo, un retorno de carro o un avance de línea. Utilice CHAR(13) y CHAR(10) para
colocar una nueva línea y un retorno de carro en una cadena de caracteres:

PRINT 'First line.' + CHAR(13) + CHAR(10) + 'Second line.'

La forma en que se interpretan los patrones de bit almacenados en los bytes de una
cadena de caracteres se basa en la página de códigos de Microsoft SQL Server que se ha
especificado durante la instalación. Un objeto char o varchar puede contener cualquier
carácter de la página de códigos de SQL Server.

Las aplicaciones de bibliotecas de bases de datos y las aplicaciones que usan los
controladores ODBC de SQL Server de las versiones SQL Server 6.5 o anteriores sólo
admiten hasta 255 bytes de datos de caracteres. Si estas aplicaciones intentan recuperar
parámetros de carácter de SQL Server versión 7.0 o columnas de conjuntos de
resultados que contengan más de 255 bytes de datos, los datos de carácter se truncan a
255 bytes.

Utilizar datos de fecha y hora

Microsoft® SQL Server™ tiene los tipos de datos datetime y smalldatetime para
almacenar datos de fecha y hora.

No hay tipos de datos diferentes de hora y fecha para almacenar sólo horas o sólo
fechas. Si sólo se especifica una hora cuando se establece un valor datetime o
smalldatetime, el valor predeterminado de la fecha es el 1 de enero de 1900. Si sólo se
especifica una fecha, la hora será, de forma predeterminada, 12:00 a.m. (medianoche).

En los datos de fecha y hora puede realizar las siguientes operaciones:

• Escribir fechas nuevas o cambiar las existentes.
• Realizar cálculos de fecha y hora, como sumar o restar fechas.
• Buscar una hora y/o fecha determinada.

En los datos datetime, puede realizar algunos cálculos aritméticos con las funciones de
fecha del sistema.

A continuación se muestran algunas directrices acerca de la utilización de datos de
fecha y hora:

• Para buscar una coincidencia exacta tanto de fecha como de hora, use un signo igual

(=). Microsoft SQL Server devuelve valores de fecha y hora que coincidan
exactamente con el mes, día y año, y a la hora exacta 12:00:00:000 a.m. (de forma
predeterminada).

• Para buscar un valor parcial de fecha u hora, use el operador LIKE. SQL Server
convierte primero las fechas al formato datetime y, a continuación, a varchar.
Puesto que los formatos de presentación estándar no incluyen segundos ni
milisegundos, no puede buscarlos con LIKE y un patrón de coincidencia, a menos
que utilice la función CONVERT con el parámetro estilo establecido en 9 ó 109.

• SQL Server 7.0 evalúa las constantes datetime en tiempo de ejecución. Una cadena

de fecha que funcione para los formatos de fecha que espera un idioma puede
resultar irreconocible si la consulta se ejecuta mediante una conexión que utiliza un
idioma y configuración de formato de fechas diferentes. Por ejemplo, la vista
siguiente funciona correctamente en conexiones realizadas con el idioma
configurado como inglés de EE.UU., pero no funciona en las conexiones realizadas
con otros idiomas:

CREATE VIEW USA_Dates AS
SELECT *
FROM Northwind.dbo.Orders
WHERE OrderDate < 'May 1, 1997'

Cuando utilice constantes datetime en consultas ejecutadas en conexiones que
utilizan diferentes configuraciones de idioma, debe tomar precauciones para
comprobar que las fechas se aceptan en todas las configuraciones de idioma. Debe
tomar las mismas precauciones cuando utilice constantes datetime en objetos
permanentes de bases de datos internacionales como, por ejemplo, las restricciones
de tabla y las cláusulas WHERE de vistas..

SQL Server reconoce los datos de fecha y hora incluidos entre comillas simples (') con
los siguientes formatos:

• Formatos alfabéticos de fecha (por ejemplo, '15 de abril de 1998')
• Formatos numéricos de fecha (por ejemplo, '15/4/1998', '15 de abril de 1998)
• Formatos de cadenas sin separar (por ejemplo, '19981207', '12 de Diciembre de

1998')

Formato alfabético de las fechas

Microsoft® SQL Server™ permite especificar datos de fechas con un mes indicado con
su nombre completo (por ejemplo, Abril) o la abreviación del mes dado (por ejemplo,
Abr) en el idioma actual; las comas son opcionales y las mayúsculas se pasan por alto.

Algunas directrices para la utilización de formatos alfabéticos de fecha son:

• Incluya los datos de fecha y hora entre comillas simples (‘).
• Éstos son formatos alfabéticos válidos para los datos de fecha de SQL Server (los

caracteres [] indican caracteres opcionales):

Apr[il] [15][,] 1996
Apr[il] 15[,] [19]96
Apr[il] 1996 [15]
[15] Apr[il][,] 1996
15 Apr[il][,][19]96
15 [19]96 apr[il]
[15] 1996 apr[il]
1996 APR[IL] [15]
1996 [15] APR[IL]

• Si especifica solamente los dos últimos dígitos del año, los valores que son menores
que los dos últimos dígitos de la opción de configuración two digit year cutoff
(reducción del año a dos dígitos) pertenecen al mismo siglo que el año reducido. Los
valores mayores o iguales que el valor de esta opción pertenecen al siglo anterior al
año reducido. Por ejemplo, el valor de la opción two digit year cutoff es 2050
(valor predeterminado), 25 se interpreta como 2025 y 50 se interpreta como 1950.
Para evitar la ambigüedad, utilice años de cuatro dígitos.

• Si falta el día, se supone el primer día del mes.

• La configuración de sesión SET DATEFORMAT no se aplica cuando se especifica
el mes de forma alfabética.

Formato numérico de fecha

Microsoft® SQL Server™ permite especificar datos de fecha en la que aparece un mes
en forma de número. Por ejemplo, 5/20/97 es el día 20 de mayo del año 1997. Cuando
use el formato numérico de fecha, especifique el mes, día y año en una cadena con
barras diagonales (/), guiones (-) o puntos (.) como separadores. Esta cadena debe
aparecer de la forma siguiente:

número separador número separador número [hora] [hora]
Estos formatos numéricos son válidos:

[0]4/15/[19]96 -- (mdy)
[0]4-15-[19]96 -- (mdy)
[0]4.15.[19]96 -- (mdy)
[04]/[19]96/15 -- (myd)
15/[0]4/[19]96 -- (dmy)
15/[19]96/[0]4 -- (dym)
[19]96/15/[0]4 -- (ydm)
[19]96/[04]/15 -- (ymd)

Cuando el idioma está establecido a us_english, el orden predeterminado de la fecha es
mda. Con la instrucción SET DATEFORMAT puede cambiar el orden de la fecha, lo
que también puede afectar al formato de la hora, según el idioma.

La configuración de SET DATEFORMAT determina cómo se interpretan los valores de
fecha. Si el orden no coincide con la configuración, los valores no se interpretan como
fechas (puesto que se encuentran fuera del intervalo), o los valores se interpretan
incorrectamente. Por ejemplo, 12/10/08 se puede interpretar de seis formas distintas,
según la configuración de DATEFORMAT.

Formato de cadena sin separar

Microsoft® SQL Server™ permite especificar datos de fecha como una cadena sin
separar. Los datos de fecha se pueden especificar con cuatro, seis u ocho dígitos, una
cadena vacía o un valor de hora sin un valor de fecha.

La configuración de sesión SET DATEFORMAT no se aplica a las entradas de fecha
totalmente numéricas (entradas numéricas sin separadores). Las cadenas de seis u ocho
dígitos se interpretan siempre como amd. El mes y el día deben ser siempre de dos
dígitos.

Éste es el formato válido de una cadena sin separar:

[19]960415

Una cadena de sólo cuatro dígitos se interpreta como el año. El mes y el día se
establecen a 1 de enero. Cuando se especifican sólo cuatro dígitos, es necesario incluir
el siglo.

Formatos de hora

Microsoft® SQL Server™ reconoce los siguientes formatos de datos de hora. Incluya
cada formato entre comillas simples (‘).

14:30
14:30[:20:999]
14:30[:20.9]
4am
4 PM
[0]4[:30:20:500]AM

Puede especificar el sufijo AM o PM para indicar si el valor de la hora es anterior o
posterior a las 12 del mediodía. No se distingue entre mayúsculas y minúsculas en AM
o PM.

Las horas se pueden especificar con el reloj de 12 o de 24 horas. De forma
predeterminada, las horas del intervalo de 0 a 12 son a.m. (AM), y las horas del
intervalo de 13 a 23 son p.m. (PM). Las horas del intervalo de 1a 12 representan horas
antes del mediodía si se especifica AM y representan horas posteriores al mediodía si se
especifica PM. Las horas del intervalo 13 a 23 representan horas posteriores al
mediodía, independientemente de si se especifica PM. No es válido especificar PM en
una hora del intervalo de 0 a 12. El valor 24:00 no es válido: use 12:00AM, 12:00 o
00:00 para representar la medianoche.

Los milisegundos se pueden preceder de dos puntos (:) o un punto (.). Si se preceden de
dos puntos, el número significa milésimas de segundo. Si se precede de un punto, un
único dígito significa décimas de segundo, dos dígitos significa centésimas de segundo
y tres dígitos significa milésimas de segundo. Por ejemplo, 12:30:20:1 significa las
12:30, veinte segundos y una milésima; 12:30:20.1 significa las 12:30, veinte segundos
y una décima.

Formato datetime de ODBC

La API de ODBC define secuencias de escape para representar valores de fecha y de
hora, que ODBC llama datos de marca de hora. Este formato de marca de hora de
ODBC lo admite también la definición del lenguaje de OLE DB (DBGUID-SQL)
aceptada por Microsoft OLE DB Provider for SQL Server. Las aplicaciones que usan
las API basadas en ODBC, OLE DB y ADO pueden usar este formato de marca de hora
de ODBC para representar fechas y horas.
Las secuencias de escape de marcas de hora de ODBC tienen el formato:

{ tipoLiteral 'valorConstante' }
tipoLiteral
Especifica el tipo de la secuencia de escape. Las marcas de hora tienen tres
indicadores tipoLiteral:
d = sólo fecha.
t = sólo hora.
ts = marca de hora (hora + fecha).
'valorConstante'
Es el valor de la secuencia de escape. valorConstante debe seguir estos formatos
para cada tipoLiteral.

tipoLiteral formato valorConstante
d aaaa-mm-dd
t hh:mm:ss[.fff]
ts aaaa-mm-dd hh:mm:ss[.fff]

Los siguientes son ejemplos de constantes de hora y fecha de ODBC:
{ ts '1998-05-02 01:23:56.123' }
{ d '1990-10-02' }
{ t '13:33:41' }

No confunda el nombre del tipo de datos de marca de hora de ODBC y OLE DB
(timestamp) con el nombre del tipo de datos timestamp de Transact-SQL. El tipo de
datos de marca de hora de ODBC y OLE DB guarda fechas y horas. El tipo de datos
timestamp de Transact-SQL es un tipo de datos binario con valores no relacionados
con el tiempo.

Utilizar datos enteros

Los enteros son números completos. No contienen decimales o fracciones.
Microsoft® SQL Server™ tiene tres tamaños distintos de tipos de datos enteros:

• integer o int

Tiene una longitud de 4 bytes y almacena números entre
-2.147.483.648 y 2.147.483.647.

• smallint
Tiene una longitud de 2 bytes y almacena números entre -32.768 y 32.767.

• tinyint
Tiene una longitud de 1 byte y almacena números entre 0 y 255.

Los objetos y expresiones enteras se pueden usar en cualquier operación matemática.
Cualquier fracción generada por estas operaciones será truncada, no redondeada. Por
ejemplo, SELECT 5/3 devuelve el valor 1, no el valor 2 que devolvería si se redondeara
el resultado fraccionario.

Los tipos de datos enteros son los únicos que se pueden usar con la propiedad
IDENTITY, que es un número que se incrementa automáticamente. La propiedad
IDENTITY se usa normalmente para generar automáticamente números exclusivos de
identificación o claves principales.

No es necesario incluir los datos enteros entre comillas simples como los datos de
carácter o de fecha y hora.

Utilizar datos decimal, float y real

El tipo de datos decimal puede almacenar hasta 38 dígitos y todos pueden estar a la
derecha del separador decimal. El tipo de datos decimal almacena una representación
exacta del número; no hay una aproximación del valor almacenado.
Los dos atributos que definen las columnas, variables y parámetros decimal son:

• p

Especifica la precisión, o el número de dígitos que puede contener el objeto.
• s

Especifica la escala, o el número de dígitos que puede ir a la derecha del separador
decimal.

p y s deben seguir la regla: 0 <= s <= p <= 38.

Use el tipo de datos decimal para almacenar números con decimales cuando los valores
de datos se deban almacenar exactamente como se especifican.

En Transact-SQL, numeric es un sinónimo del tipo de datos decimal.

Utilizar datos float y real

Los tipos de datos float y real se conocen como tipos de datos aproximados. El
comportamiento de float y real sigue la especificación IEEE 754 acerca de los tipos de
datos numéricos aproximados.

Los tipos de datos numéricos aproximados no almacenan los valores exactos
especificados para muchos números; almacenan una aproximación muy precisa del
valor. Para muchas aplicaciones, la pequeña diferencia entre el valor especificado y la
aproximación almacenada no es apreciable. Sin embargo, a veces la diferencia se hace
notar. Debido a esta naturaleza aproximada de los tipos de datos float y real, no los use
cuando necesite un comportamiento numérico exacto, como, por ejemplo, en
aplicaciones financieras, en operaciones que conlleven un redondeo o en
comprobaciones de igualdad. En su lugar, use los tipos de datos enteros, decimal,
money o smallmoney.

Evite usar columnas float o real en las condiciones de búsqueda de la cláusula
WHERE, especialmente los operadores = y <>. Es mejor limitar las columnas float y
real a las comparaciones > o <.

La especificación IEEE 754 proporciona cuatro modos de redondeo: redondear al más
cercano, redondear hacia arriba, redondear hacia abajo y redondear hacia cero.
Microsoft® SQL Server™ usa el redondeo hacia arriba. Todos son precisos para
garantizar la exactitud, aunque pueden dar como resultado valores en punto flotante
ligeramente distintos. Puesto que la representación binaria de un número en punto
flotante puede usar cualquiera de los esquemas válidos de redondeo, es imposible
cuantificar de forma precisa un valor en punto flotante.

Utilizar datos text e image

Microsoft® SQL Server™ almacena cadenas de caracteres con más de 8.000 caracteres
y datos binarios con más de 8.000 bytes en tipos de datos especiales llamados text e
image. Las cadenas Unicode superiores a 4.000 caracteres se almacenan en el tipo de
datos ntext.

Por ejemplo, suponga que tiene un archivo grande de texto (.TXT) de información de
clientes que es necesario importar a la base de datos de SQL Server. Estos datos desea
que se almacenen como un único dato, en lugar de integrarlos en las diversas columnas
de las tablas de datos. Con este propósito puede crear una columna del tipo de datos
text. Sin embargo, si necesita almacenar logotipos de empresa, almacenados
actualmente como imágenes TIFF (.TIF) de 10 KB cada uno, cree una columna del tipo
de datos image.

Si los datos del texto que desea almacenar se encuentran en formato Unicode, use el tipo
de datos ntext. Por ejemplo, una carta modelo creada para clientes internacionales
seguramente contendrá ortografías y caracteres internacionales usados en varias culturas
distintas. Almacene estos datos en una columna ntext.

SQL Server interpreta los datos text como series de caracteres mediante la página de
códigos instalada con SQL Server. SQL Server interpreta los datos ntext como series de
caracteres con la especificación de Unicode.

Los datos de tipo image se almacenan como una cadena de bits y no son interpretados
por SQL Server. Cualquier interpretación de los datos de una columna image debe ser
realizada por la aplicación. Por ejemplo, una aplicación podría almacenar datos en una
columna image con el formato BMP, TIFF, GIF o JPEG. Depende de la aplicación que
lee los datos de la columna image reconocer o no el formato de los datos y mostrarlos
correctamente. Todo lo que hace una columna image es proporcionar una ubicación
para almacenar la secuencia de bits que conforman los datos de la imagen.

Utilizar Constantes

Una constante es un símbolo que representa el valor específico de un dato. El formato
de las constantes depende del tipo de datos del valor que representa. Las constantes se
llaman también literales. Algunos ejemplos de constantes son:

• Cadenas de caracteres:

 'O''Brien'
 'The level for job_id: %d should be between %d and %d.'

• Cadenas Unicode:
N'Michél'

• Constantes de cadenas binarias:
 0x12Ef
 0x69048AEFDD010E

• Las constantes bit se representan con los números 0 o 1.
• Constantes datetime:

 'April 15, 1998'
 '04/15/98'

 '14:30:24'
'04:24 PM'

• Constantes integer:
1894
2

• Constantes decimal:
1894.1204
2.0

• Constantes float y real
101.5E5
0.5E-2

• Constantes money:
$12
$542023.14

• Constantes uniqueidentifier:
0xff19966f868b11d0b42d00c04fc964ff
'6F9619FF-8B86-D011-B42D-00C04FC964FF'

Para las constantes numéricas, use los operadores unarios + y - cuando sea necesario
especificar el signo del valor numérico:

+$156.45
-73.52E8
-129.42
+442

Utilizar constantes en Transact-SQL

Las constantes se pueden usar de muchas formas en Transact-SQL. A continuación se
muestran algunos ejemplos:

• Como un valor constante de una expresión aritmética:

 SELECT Price + $.10
 FROM MyTable

• Como el valor con el que se compara una columna en una cláusula
 WHERE:

 SELECT *
 FROM MyTable
 WHERE LastName = 'O''Brien'

• Como el valor que se va a colocar en una variable:
 SET @DecimalVar = -1200.02

• Como el valor que debe colocarse en una columna de la fila actual.
Esto se especifica con la cláusula SET de la instrucción UPDATE o la cláusula
VALUES de una instrucción INSERT:
 UPDATE MyTable

 SET Price = $99.99
 WHERE PartNmbr = 1234
 INSERT INTO MyTable VALUES (1235, $88.88)
• Como la cadena de caracteres que especifica el texto del mensaje emitido por una

instrucción PRINT o RAISERROR:
 PRINT 'This is a message.'
• Como el valor que se va a probar en una instrucción condicional, como, por

ejemplo, una instrucción IF o funciones CASE:

IF (@@SALESTOTAL > $100000.00)
EXECUTE Give_Bonus_Procedure

Funciones

Microsoft® SQL Server™ dispone de funciones integradas para realizar ciertas
operaciones rápida y fácilmente. Las categorías en que se dividen las funciones son:

Funciones de agregado

Realizan operaciones que combinan varios valores en uno.
Ejemplos son COUNT, SUM, MIN y MAX.

Funciones de configuración
Son funciones escalares que devuelven información acerca de la
configuración.

Funciones de cursores

Devuelven información acerca del estado de un cursor.
Funciones de fecha y hora

Tratan valores datetime y smalldatetime.
Funciones matemáticas

Realizan operaciones trigonométricas, geométricas y demás
operaciones numéricas.

Funciones de metadatos
Devuelven información acerca de los atributos de las bases de
datos y de los objetos de base de datos.

Funciones de conjuntos de filas
Devuelven conjuntos de filas que se pueden usar en el lugar de
una referencia de tabla de una instrucción de Transact-SQL.

Funciones de seguridad
Devuelven información acerca de usuarios y funciones.

Funciones de cadena
Tratan valores char, varchar, nchar, nvarchar, binary y

varbinary.
Funciones del sistema

Funcionan en o informan acerca de varias opciones y objetos del
sistema.

Funciones de estadísticas del sistema
Devuelven información relacionada con el rendimiento de SQL

Server.
Funciones de texto e imagen

Tratan valores text e image.

Las funciones se pueden usar o incluir en:

• La lista de selección de una consulta que usa una instrucción SELECT para devolver

un valor.
SELECT DB_NAME()

• Una condición de búsqueda de una cláusula WHERE de una instrucción SELECT o
de modificación de datos (SELECT, INSERT, DELETE o UPDATE) para limitar
las filas adecuadas para la consulta.

SELECT *
FROM [Order Details]

WHERE Quantity =
(SELECT MAX(Quantity) FROM [Order Details])

• La condición de búsqueda (condición WHERE) de una vista para hacer que la vista
se adapte dinámicamente al usuario o entorno en tiempo de ejecución.

CREATE VIEW ShowMyEmploymentInfo AS
SELECT * FROM Employees
WHERE EmployeeID = SUSUARIO_SID()
GO

• Cualquier expresión.

• Un desencadenador o restricción CHECK para comprobar los valores especificados

cuando se insertan datos.

CREATE TABLE SalesContacts
(SalesRepID INT PRIMARY KEY CHECK (SalesRepID = SUSUARIO_SID()),
ContactName VARCHAR(50) NULL,
ContactPhone VARCHAR(13) NULL)

• Un desencadenador o restricción DEFAULT para suministrar un valor en el caso de

que no se especifique ninguno en una instrucción INSERT.

CREATE TABLE SalesContacts
(
SalesRepID INT PRIMARY KEY CHECK (SalesRepID = SUSUARIO_SID()),
ContactName VARCHAR(50) NULL,
ContactPhone VARCHAR(13) NULL,
WhenCreated DATETIME DEFAULT GETDATE(),
Creator INT DEFAULT SUSUARIO_SID()
)
GO

Las funciones se usan siempre con paréntesis, incluso cuando no haya parámetros. Una
excepción son las funciones niládicas (funciones que no toman parámetros) usadas con
la palabra clave DEFAULT.

Algunas veces, los parámetros que especifican una base de datos, equipo, inicio de
sesión o usuario de base de datos son opcionales. Si no se proporcionan, el valor
predeterminado es el de la base de datos, equipo host, inicio de sesión o usuario de base
de datos actual.
Las funciones se pueden anidar (una función se usa dentro de otra función).

Utilizar funciones del sistema

Las funciones del sistema permiten que tenga acceso a la información de las tablas del
sistema de Microsoft® SQL Server™ sin tener acceso directamente a las tablas del
sistema.

Este grupo de cinco pares de funciones del sistema para bases de datos, hosts, objetos,
inicios de sesión y usuarios devuelven un nombre cuando se les proporciona un
identificador y devuelven un identificador cuando se les proporciona un nombre:

• DB_ID y DB_NAME
• HOST_ID y HOST_NAME
• OBJECT_ID y OBJECT_NAME
• SUSUARIO_ID y SUSUARIO_NAME (o SUSUARIO_SID y
SUSUARIO_SNAME)
• USUARIO_ID y USUARIO_NAME

Estas funciones ofrecen una forma fácil de convertir un nombre a un identificador, y un
identificador a un nombre. Por ejemplo, use la función DB_ID para obtener un número
de Id. de base de datos en lugar de ejecutar una instrucción SELECT de la tabla
sysobjects.
En este ejemplo se recupera el nombre del usuario actual conectado (mediante
Autenticación de SQL Server).

SELECT SUSUARIO_NAME()

Las siguientes funciones son similares, pero no se producen en pares complementarios y
necesitan más de un parámetro de entrada:

• COL_NAME
Devuelve un nombre de columna.

• COL_LENGTH
Devuelve la longitud de una columna.

• INDEX_COL
Devuelve el nombre de la columna de un índice.

• COL_LENGTH
 devuelve la longitud de una columna, no la longitud de ninguna cadena
individual almacenada en la columna. Use la función DATALENGTH para
determinar el número total de caracteres en un valor determinado.

En este ejemplo se devuelve la longitud de la columna y la longitud de los datos de la
columna LastName de la tabla Employees.

SELECT COL_LENGTH('Employees', 'LastName') AS Col_Length,
DATALENGTH(LastName) AS DataLength
FROM Employees
WHERE EmployeeID > 6

Nota Se recomienda usar las funciones del sistema, las vistas del sistema de
información o los procedimientos almacenados del sistema para obtener acceso a la
información del sistema sin consultar directamente las tablas del sistema. Las tablas del
sistema pueden cambiar significativamente entre versiones de SQL Server.

Utilizar funciones de cadena

Las funciones de cadena se usan para realizar varias operaciones en cadenas de
caracteres y binarias, y devuelven valores que, normalmente, son necesarios para las
operaciones con los datos de caracteres. La mayor parte de las funciones de cadena se
pueden usar sólo en los tipos de datos char, nchar, varchar y nvarchar o en los tipos
de datos que se convierten a ellos implícitamente. En los datos binary y varbinary se
pueden usar también unas cuantas funciones de cadena.

Las funciones de cadena se pueden usar para:

• Recuperar sólo una parte de una cadena (SUBSTRING).

• Buscar similitudes en el sonido de una cadena de caracteres (SOUNDEX y
DIFFERENCE).

• Buscar una posición de inicio de una cadena particular en una columna o expresión.
Por ejemplo, la posición de la letra A en “¡Qué día tan bonito!”.

• Concatenar o combinar cadenas en una sola. Por ejemplo, combinar un nombre,
apellido y segundo nombre o inicial en un nombre completo.

• Convertir un valor que no sea de cadena a un valor de cadena (como, por ejemplo,
convertir el valor 15,7, almacenado como float, a char).

• Insertar una cadena específica en una cadena existente. Por ejemplo, insertar la
cadena “una vez” en una cadena existente “Érase” para producir la cadena “Érase
una vez”.

Utilizar SUBSTRING

La función SUBSTRING devuelve una parte de un carácter o cadena binaria, o una
cadena de texto, y toma tres parámetros:

• Una cadena de caracteres o binaria, un nombre de columna o una expresión que da

como resultado una cadena e incluye un nombre de columna.
• La posición en la que debe empezar la subcadena.
• La longitud (en número de caracteres o en número de bytes para binary) de la

cadena que se va a devolver.

En este ejemplo se muestra la primera inicial y el nombre de cada empleado, como, por
ejemplo, A Fuller.

USE Northwind
SELECT SUBSTRING(FirstName, 1, 1), LastName
FROM Employees
En este ejemplo se muestran el segundo, tercero y cuarto caracteres de la constante de
cadena abcdef.
SELECT x = SUBSTRING('abcdef', 2, 3)
x

bcd
(1 row(s) affected)

Comparación de CHARINDEX y PATINDEX

Las funciones CHARINDEX y PATINDEX devuelven la posición de inicio del patrón
que se especifique. PATINDEX puede usar caracteres comodín, mientras que
CHARINDEX no puede.

Las funciones toman dos parámetros:

• El patrón cuya posición se desea obtener. Con PATINDEX, el patrón es una cadena

de literales que puede contener caracteres comodín. Con CHARINDEX, el patrón es
una cadena de literales (sin caracteres comodín).

• Una expresión que da como resultado una cadena, normalmente, un nombre de
columna, en la que Microsoft® SQL Server™ busca la cadena especificada.

Por ejemplo, para buscar la posición en que comienza la cadena “wonderful” en una fila
específica de la columna notes de la tabla titles.

USE pubs
SELECT CHARINDEX('wonderful', notes)
FROM titles
WHERE title_id = 'TC3218'
Éste es el conjunto de
resultados:

46
(1 row(s) affected)

Si no restringe las filas en las que buscar, la consulta devolverá todas las filas de la tabla
e indicará valores distintos de cero para las filas en las que haya encontrado la cadena y
cero para todas las restantes.

Por ejemplo, para utilizar caracteres comodín para encontrar la posición en la que
comienza la cadena “breads” en cualquier fila de la columna Description de la tabla
Categories.

USE Northwind
GO
SELECT CategoryID, PATINDEX('%candies%', LOWER(Description))
FROM Categories
WHERE PATINDEX('%candies%', Description) <> 0

Si no restringe las filas en las que buscar, la consulta devolverá todas las filas de la tabla
e indicará valores distintos de cero para las filas en las que haya encontrado la cadena.

PATINDEX resulta de utilidad con los tipos de datos text y se puede emplear en una
cláusula WHERE además de IS NULL, IS NOT NULL y LIKE (las únicas
comparaciones adicionales válidas con text en una cláusula WHERE).

Utilizar STR

La función STR convierte números a caracteres, con parámetros opcionales para
especificar la longitud total del resultado, incluidos el separador decimal y el número de
posiciones que siguen al separador decimal.

Los parámetros longitud y decimal de STR (si se suministran) deben ser positivos. La
longitud predeterminada es 10. De forma predeterminada o si el parámetro decimal es 0,
el número se redondea a un entero. La longitud especificada debe ser mayor o igual que
la longitud de la parte del número anterior al separador decimal, más el signo (si
corresponde).

En este ejemplo se convierte la expresión float 123,45 a un carácter, con una longitud de
6 caracteres y 2 lugares decimales.

SELECT STR(123.45, 6, 2)
Éste es el conjunto de resultados:

123.45
(1 row(s) affected)

Si la parte entera de la expresión que se está convirtiendo a una cadena de caracteres
excede de la longitud especificada en STR, STR devuelve ** para la longitud
especificada. Por ejemplo, el número 1234567,89 tiene 7 dígitos a la izquierda del
separador decimal. Si el parámetro que indica la longitud de STR es 7 o más, la cadena
resultante contiene el entero y tantos decimales como quepan. Si el parámetro que
indica la longitud de STR es 6 o menos, se devuelven asteriscos. Por ejemplo, el lote:

SELECT STR(1234567.89, 7, 2)
SELECT STR(1234567.89, 6, 2)
Devuelve:

1234568
(1 row(s) affected)

(1 row(s) affected)

STR ofrece más flexibilidad que CAST al convertir tipos de datos decimal a tipos de
datos de caracteres porque proporciona un control explícito del formato.

Utilizar STUFF

La función STUFF inserta una cadena en otra. Elimina una longitud determinada de
caracteres de la primera cadena a partir de la posición de inicio y, a continuación,
inserta la segunda cadena en la primera, en la posición de inicio.

Si la posición de inicio o la longitud es negativa, o si la posición de inicio es mayor que
la longitud de la primera cadena, se devuelve una cadena Null. Si la longitud que se va a
eliminar es mayor que la primera cadena, se elimina hasta el primer carácter de la
primera cadena.

En este ejemplo se coloca la cadena de caracteres “xyz” a continuación del segundo
carácter de la expresión de caracteres “abc” y sustituye un total de tres caracteres.
SELECT STUFF('abc', 2, 3, 'xyz')

Este es el conjunto de resultados:

axyz
(1 row(s) affected)

Comparación de SOUNDEX y DIFFERENCE

La función SOUNDEX convierte una cadena de caracteres a un código de cuatro dígitos
para ser utilizado en una comparación. En la comparación se pasan por alto las vocales.

Para determinar la comparación se usan caracteres no alfabéticos. Esta función siempre
devuelve un valor.

En este ejemplo se muestran los resultados de la función SOUNDEX para las cadenas
similares de caracteres “Smith” y “Smythe”. Cuando las cadenas de caracteres son
similares, ambas tienen los mismos códigos SOUNDEX.
SELECT SOUNDEX ('smith'), SOUNDEX ('smythe')
Éste es el conjunto de resultados:

----- -----
S530 S530
(1 row(s) affected)

La función DIFFERENCE compara los valores SOUNDEX de dos cadenas, evalúa las
similitudes entre ellas y devuelve un valor entre 0 y 4, donde 4 representa la mejor
coincidencia. En este ejemplo se devuelve una DIFFERENCE de 4 para el primer
SELECT porque “Smithers” y “Smothers” difieren sólo en un carácter.

SELECT DIFFERENCE('smithers', 'smothers')

Éste es el conjunto de resultados:

4
(1 row(s) affected)

En este ejemplo se devuelve una DIFFERENCE de 3 que indica que las dos cadenas de
caracteres tienen un sonido similar, aunque difieren en varios caracteres.
SELECT DIFFERENCE('Jeff', 'Geoffe')

Utilizar las funciones text, ntext e image

Hay dos funciones text, ntext e image utilizadas exclusivamente para realizar
operaciones en datos text, ntext e image:

• TEXTPTR devuelve un objeto binary(16) que contiene un puntero a una instancia

text, ntext o image. El puntero es válido hasta que se elimina la fila.
• La función TEXTVALID comprueba si un determinado puntero de texto es válido o

no.

Los punteros de texto se pasan a las instrucciones READTEXT, UPDATETEXT,
WRITETEXT, PATINDEX, DATALENGTH y SET TEXTSIZE de Transact-SQL que
se usan para el tratamiento de datos text, ntext, e image.

En las instrucciones de Transact-SQL, se hace referencia siempre a los datos text, ntext
e image mediante punteros o las direcciones de los datos.

En este ejemplo se usa la función TEXTPTR para localizar la columna text (pr_info)
asociada con pub_id 0736 en la tabla pub_info de la base de datos pubs. Primero se
declara la variable local @val. El siguiente puntero (una cadena binaria larga) se coloca

entonces en @val y se suministra como parámetro a la instrucción READTEXT, que
devuelve 10 bytes, empezando en el quinto byte (desplazamiento de 4).

USE pubs
DECLARE @val varbinary(16)
SELECT @val = textptr(pr_info) FROM pub_info
WHERE pub_id = '0736'
READTEXT pub_info.pr_info @val 4 10
Éste es el conjunto de resultados:
(1 row(s) affected)
pr_info
--
is sample

Con la función CAST se admiten las conversiones explícitas realizadas desde los tipos
de datos text a varchar, ntext a nvarchar e image a varbinary o binary, aunque los
datos text o image se truncan a 8.000 bytes y los datos ntext se truncan a 4.000 bytes.
No se admite la conversión, implícita ni explícita, de text, ntext o image a otros tipos
de datos. Sin embargo, se puede hacer una conversión indirecta de text, ntext o image,
por ejemplo:

CAST(CAST(text_column_name AS VARCHAR(10)) AS INT).

Utilizar funciones matemáticas

Una función matemática realiza una operación matemática en expresiones numéricas y
devuelve el resultado de la operación. Las funciones matemáticas operan en los datos
numéricos suministrados por el sistema de Microsoft® SQL Server™ (decimal,
integer, float, real, money, smallmoney, smallint y tinyint). La precisión de las
operaciones integradas para el tipo de datos float es, de forma predeterminada, de seis
lugares decimales.

De forma predeterminada, un número pasado a una función matemática será
interpretado como un tipo de datos decimal. Se puede usar las funciones CAST o
CONVERT para cambiar el tipo de datos a otro distinto, como, por ejemplo, float. Por
ejemplo, el valor devuelto por la función FLOOR tiene el tipo de datos del valor de
entrada. La entrada de esta instrucción SELECT es de tipo decimal y FLOOR devuelve
123, que es un valor decimal:

SELECT FLOOR(123.45)

123
(1 row(s) affected)
Pero, en este ejemplo se usa un valor float y FLOOR devuelve un valor float:
SELECT FLOOR (CONVERT (float, 123.45))

123.000000
(1 row(s) affected)

Cuando el resultado float o real de una función matemática es demasiado pequeño para
mostrarse, se produce un error de desbordamiento negativo de punto flotante. El

resultado devuelto será 0,0 y no se mostrará ningún mensaje de error. Por ejemplo, el
cálculo matemático de 2 elevado a la potencia -100,0 daría el resultado 0,0.

Los errores de dominio se producen cuando el valor proporcionado en la función
matemática no es válido. Por ejemplo, los valores especificados para la función ASIN
deben encontrarse entre -1,00 y 1,00. Si se especifica el valor -2, por ejemplo, se
produce un error de dominio.

Los errores de intervalo se producen cuando el valor especificado se encuentra fuera de
los valores permitidos. Por ejemplo, POWER(10,0, 400) excede el valor máximo
(~2e+308) del intervalo para el tipo de datos float, mientras que POWER(-10,0, 401) es
menor que el valor mínimo (~ -2e+308) del intervalo para el tipo de datos float.

En esta tabla se muestran funciones matemáticas que producen un error de dominio o de
intervalo.

Función matemática Resultado
SQRT(-1) Error de dominio
POWER(10,0, 400) Error de desbordamiento aritmético

POWER(10,0, -400) Valor 0,0 (desbordamiento negativo
de punto flotante)

Se proporcionan capturas de error para controlar los errores de dominio o de intervalo
de estas funciones. Puede usar:

• SET ARITHABORT ON, que termina la consulta y sale de la transacción

definida por el usuario. La configuración de SET ARITHABORT suplanta la
configuración de SET ANSI_WARNINGS.

• SET ANSI_WARNINGS ON, que detiene el comando.
• SET ARITHIGNORE ON, que hace que no se muestre ningún mensaje de

advertencia. Tanto la configuración de SET ARITHABORT como de SET
ANSI_WARNINGS suplantan la configuración de SET ARITHIGNORE.

Si no se ha establecido ninguna de estas opciones, Microsoft® SQL Server™ devuelve
NULL y muestra un mensaje de advertencia después de ejecutar la consulta.

La conversión interna a float puede provocar la pérdida de precisión si se usa alguno de
los tipos de datos money o numeric.

Utilizar funciones trigonométricas

Microsoft® SQL Server™ proporciona funciones trigonométricas que devuelven
radianes.

Funciones que devuelven

radianes
Use radianes como valor de

entrada
ACOS TAN
COS SIN

ATAN ASIN
ATN2
COT

ACOS y COS
Tanto ACOS como COS son funciones trigonométricas. La función ACOS devuelve el
ángulo, en radianes, cuyo coseno es la expresión float dada. La función COS devuelve
el coseno del ángulo especificado, en radianes, dada la expresión float. Por ejemplo, la
siguiente instrucción SELECT calcula el ACOS de -0,997 y el COS del valor 1,134:
SELECT ACOS(-.997), COS(1.134)

Así, el coseno del ángulo que mide 3,06411360866591 radianes es -0,997 y el coseno
del ángulo que mide 1,134 radianes es 1,134.
El intervalo válido de ACOS es de -1 a 1.

ASIN y SIN
Tanto ASIN como SIN son funciones trigonométricas que usan una expresión float. La
función ASIN calcula el ángulo, medido en radianes, cuyo seno es la expresión float
dada. La función SIN calcula el valor del seno trigonométrico del ángulo, medido en
radianes, como una expresión float.

En este ejemplo se calcula el ASIN de -0,7582 y el SIN de 5. El seno del ángulo que
mide -0,860548023283932, en radianes, es -0,7582 y seno del ángulo que mide 5
radianes tiene un valor de -0,958924274663138.
SELECT ASIN(-.7582), SIN(5)
El intervalo válido de ASIN es de -1 a 1.

ATAN , ATN2, TAN y COT
Las funciones ATAN, ATN2, TAN y COT son funciones matemáticas. La función
ATAN devuelve la medida del ángulo, en radianes, cuya tangente es la expresión float
dada. Un ángulo que tenga un valor de tangente de -27,29 medirá -1,53416925536896
radianes.

La función ATN2 devuelve el ángulo, en radianes, cuya tangente se encuentra entre las
dos expresiones float dadas. Un ángulo con una tangente entre 3,273 y 15 mide
0,214832755968629 radianes.

La función TAN devuelve la tangente trigonométrica de la expresión float dada. Un
ángulo que mide 27,92 radianes tiene una tangente de -0,36994766163616.

La función COT devuelve la cotangente trigonométrica del ángulo especificado, en
radianes, indicado en la expresión float dada. Un ángulo de 97,1928 radianes tiene un
valor de cotangente de -5,02149424849997.

DEGREES
La función DEGREES devuelve una expresión numeric: la medida del ángulo, en
grados, de la medida del ángulo en radianes. Un ángulo que mide -14,578 radianes mide
-835,257873741714090000 grados.
SELECT DEGREES(-14.578)

RADIANS
La función RADIANS calcula el ángulo en radianes dada la medida del ángulo en
grados. Para calcular la medida en radianes de un ángulo que mide 10,75 grados, use:
SELECT RADIANS(10.75)

Comparación de CEILING y FLOOR
La función CEILING devuelve el menor entero que sea mayor o igual que la expresión
numérica dada. La función FLOOR devuelve el mayor entero que sea menor o igual que
la expresión numérica dada. Por ejemplo, dada la expresión numérica 12,9273,
CEILING devuelve 13, y FLOOR devuelve 12. El valor de retorno tanto de FLOOR
como de CEILING tiene el mismo tipo de datos que la expresión numérica de entrada.

Comparación de LOG y LOG10
La función LOG devuelve el logaritmo natural de la expresión float dada. Los
logaritmos naturales se calculan con el sistema de base 2. Sin embargo, la función
LOG10 devuelve el logaritmo en base 10. Use ambas funciones, LOG y LOG10, para
aplicaciones trigonométricas. Por ejemplo, la siguiente instrucción SELECT calcula el
LOG y el LOG10 del valor 1,75.

SELECT LOG(1.75), LOG10(1.75)

Utilizar las funciones exponenciales POWER y EXP

La función POWER devuelve el valor de la expresión numérica dada elevado a la
potencia especificada. POWER(2,3) devuelve 2 elevado a la tercera potencia: el valor 8.
Se pueden especificar potencias negativas, con lo que POWER(2,000, -3) devuelve
0,125. Observe que el resultado de POWER(2, -3) es 0. Esto es así porque el resultado
será del mismo tipo de datos que la expresión numérica dada. Así, si el resultado tiene
tres lugares decimales, el número que se va a elevar a una cierta potencia debe tener
también tres decimales.

La función EXP devuelve el valor exponencial, en notación científica, de la expresión
float dada. Así, con el valor 198,1938327, la función EXP devuelve el valor
1,18710159597953e+086.

SELECT EXP(198.1938327)

Utilizar RAND

La función RAND calcula un número aleatorio de punto flotante entre 0 y 1, y puede
tomar opcionalmente un valor tinyint, int o smallint para el punto de inicio del número
aleatorio que se va a calcular.

Este ejemplo calcula dos números aleatorios. La primera función RAND() permite a
Microsoft® SQL Server™ elegir el valor de inicio, y la segunda función RAND() usa el
valor 3 para la posición de inicio.

SELECT RAND(), RAND(3)

La función RAND es un pseudogenerador de números aleatorios que opera de forma
similar a la función rand de la biblioteca de tiempo de ejecución de C. Si no se
proporciona el valor de inicio, el sistema generará sus propios valores variables. Si
llama a RAND con un valor de inicio, debe usar valores de inicio variables para generar
números aleatorios. Si llama a RAND varias veces con el mismo valor de inicio,
devolverá el mismo valor generado. La secuencia de comandos siguiente devuelve el
mismo valor en las llamadas a RAND porque todas usan el mismo valor de inicio:

SELECT RAND(159784)
SELECT RAND(159784)
SELECT RAND(159784)

Una forma habitual de generar números aleatorios con RAND es incluir algo
relativamente variable como valor de inicio, como, por ejemplo, agregar varias partes de
un GETDATE:

SELECT RAND((DATEPART(mm, GETDATE()) * 100000)
+ (DATEPART(ss, GETDATE()) * 1000)
+ DATEPART(ms, GETDATE()))

Cuando use un algoritmo basado en GETDATE para generar valores de inicio, RAND
puede seguir generando valores duplicados si las llamadas a RAND se realizan en el
intervalo de la parte menor de la fecha usada en el algoritmo. Esto es lo que ocurrirá con
más probabilidad si las llamadas a RAND se incluyen en un único lote. En el mismo
milisegundo, que es el incremento más pequeño de DATEPART, se pueden ejecutar
múltiples llamadas a RAND en un único lote. En este caso, incorpore un valor basado
en algo diferente al tiempo para generar los valores de inicio.

Funciones de fecha

Las funciones de fecha se utilizan para mostrar información acerca de fechas y horas. Se
usan para el tratamiento de valores datetime y smalldatetime y para realizar
operaciones aritméticas en los mismos. Las funciones de fecha se pueden usar en
cualquier parte donde se pueda usar una expresión.

SQL Server reconoce una amplia variedad de formatos de entrada de datos datetime.
Puede usar la instrucción SET DATEFORMAT para establecer el orden de las partes de
la fecha (mes, día y año) para introducir datos datetime o smalldatetime. Cuando
escriba valores datetime o smalldatetime, inclúyalos entre comillas simples.

Utilizar GETDATE

La función GETDATE produce la fecha y hora actual en el formato interno de
Microsoft® SQL Server™ para los valores datetime. GETDATE acepta el parámetro
Null ().

En este ejemplo se averigua la fecha y hora actuales del sistema.
SELECT GETDATE()
Éste es el conjunto de resultados:

July 29 1995 2:50 PM
(1 row(s) affected)

Se puede usar GETDATE para diseñar un informe de manera que se impriman la fecha
y hora actual cada vez que se genere el informe. GETDATE también es útil para llevar a
cabo funciones como, por ejemplo, registrar la hora de una transacción realizada en una
cuenta.

Puede usar GETDATE en cualquier parte para devolver la fecha actual del sistema. Por
ejemplo, puede usar GETDATE como valor predeterminado para la entrada de datos,
con una variable local, o para comparar la fecha de un pedido con la fecha de hoy.

Comparación de DATEPART y DATENAME

Las funciones DATEPART y DATENAME producen la parte especificada de un valor
datetime (el año, trimestre, día, hora, etc.) como un entero o como una cadena ASCII.
Puesto que smalldatetime sólo es preciso hasta los minutos, cuando se use un valor
smalldatetime con alguna de estas funciones, los segundos y milisegundos devueltos
son siempre cero.

Los siguientes ejemplos suponen la fecha 29 de mayo.

SELECT DATEPART(mes, GETDATE())
Éste es el
conjunto de
resultados:

5
(1 row(s) affected)
SELECT DATENAME(mes, GETDATE())
Éste es el
conjunto de
resultados:

Mayo
(1 row(s) affected)

Comparación de DATEADD y DATEDIFF

La función DATEADD agrega un intervalo a la fecha que especifique. Por ejemplo, si
las fechas de publicación de todos los libros de la tabla titles se retrasan tres días, puede
obtener una nueva fecha de publicación con esta instrucción:

USE pubs
SELECT DATEADD(day, 3, pubdate)
FROM titles

Si el parámetro fecha es un tipo de datos smalldatetime, el resultado es también un
smalldatetime. Puede usar DATEADD para agregar segundos o milisegundos a un
valor smalldatetime, aunque esto sólo tiene sentido si el tipo de datos devuelto por
DATEADD cambia en un minuto, como mínimo.

La función DATEDIFF calcula la cantidad de tiempo en partes de fecha entre la
segunda y la primera de las dos fechas que especifique. En otras palabras, encuentra un
intervalo entre dos fechas. El resultado es un valor entero con signo, igual a fecha2 -
fecha1 en partes de fecha.

Esta consulta usa la fecha 30 de noviembre de 1995 y busca el número de días que hay
entre pubdate (fecha de publicación) y esa fecha.

USE pubs
SELECT DATEDIFF(day, pubdate, 'Nov 30 1995')
FROM titles

Para las filas de los títulos que tengan una pubdate de 21 de octubre de 1995, el
resultado producido por la última consulta es 40. (Hay 40 días entre el 21 de octubre y
el 30 de noviembre). Para calcular un intervalo en meses, utilice esta consulta:

USE pubs
SELECT interval = DATEDIFF(month, pubdate, 'Nov 30 1995')
FROM titles

Esta consulta produce el valor 1 para las filas con una pubdate en octubre y el valor 5
para las filas con una pubdate en junio.

Cuando la primera fecha de la función DATEDIFF sea posterior a la segunda fecha
especificada, el valor resultante será negativo. Puesto que dos de las filas de titles tienen
valores para pubdate que son asignados con la función GETDATE como valor
predeterminado, estos valores se establecen a la fecha en la que la base de datos pubs
fue creada, y se devuelven valores negativos en las dos consultas precedentes.

Si uno o ambos argumentos de fecha son un valor smalldatetime, para el cálculo serán
convertidos internamente a valores datetime. Los segundos y milisegundos de los
valores smalldatetime se establecen automáticamente a 0 por motivos que tienen que
ver con los cálculos.

Funciones que devuelven identificadores y nombres de usuarios

Varias funciones del sistema devuelven identificadores y nombres de usuarios. Para
comprender los parámetros y datos de salida de estas funciones es necesario comprender
los tipos de nombres e identificadores utilizados en Microsoft® SQL Server™.

Cada usuario que se conecta a SQL Server tiene dos clases de nombres en SQL Server y
cada nombre está asociado con un identificador exclusivo:

• Nombres de inicio de sesión

Cada usuario autorizado para conectarse a SQL Server tiene un nombre de inicio de
sesión que le proporciona acceso a una instalación de SQL Server. Hay dos tipos de
nombres de inicio de sesión:

• Nombres de cuentas de Microsoft Windows NT®
Los miembros de las funciones fijas de servidor sysadmin o SecurityAdmin
pueden autorizar a cuentas de Windows NT de usuarios individuales o a grupos de
Windows NT para iniciar una sesión en una instalación de SQL Server con
sp_grantInicio de sesión. El usuario identificado por la cuenta de Windows NT o
cualquier persona del grupo de Windows NT pueden conectarse con la instalación
de SQL Server mediante la Autenticación de Windows NT. Cada nombre de cuenta
o grupo de Windows NT se almacena en master.dbo.sysxInicios de sesión.name.

El identificadorDeSeguridad (Seguridad_identifier) de Windows NT de la cuenta o
grupo de Windows NT está almacenado en sysInicios de sesión.sid.

• Nombres de inicio de sesión de SQL Server

Los utilizan los usuarios que inician una sesión con la Autenticación de SQL Server.
Los miembros de las funciones fijas de servidor sysadmin o SecurityAdmin
definen los nombres de inicio de sesión de SQL Server con sp_addInicio de sesión.
Cada nombre de inicio de sesión de SQL Server está almacenado en
master.dbo.sysxInicios de sesión.name. SQL Server genera un GUID que se
utiliza como identificadorDeSeguridad (Seguridad_identifier) y lo almacena en
sysxInicios de sesión.sid.

SQL Server utiliza master.dbo.sysxInicios de sesión.sid como
identificadorDeSeguridad del nombre de inicio de sesión. Las versiones anteriores
de SQL Server utilizaban, en su lugar, un IdUsuarioServidor de una tabla diferente:
master.dbo.sysInicios de sesión.suid. Para mantener la compatibilidad con
versiones anteriores, SQL Server implementa sysInicios de sesión como una vista
de sysxInicios de sesión y sysInicios de sesión.suid es una columna calculada que
genera un IdUsuarioServidor a partir del identificadorDeSeguridad de sysxInicios
de sesión.

• Nombre de usuario de base de datos

Cada cuenta de Windows NT o inicio de sesión de SQL Server debe estar asociado
con un nombre de usuario en cada base de datos a la que tengan autorización para
obtener acceso. Los miembros de las funciones fijas de base de datos db_owner o
db_accessadmin definen los nombres de usuario de base de datos, y se almacenan
en la tabla sysusuarios de cada base de datos. Cada nombre de usuario de base de
datos está asociado con un identificador de usuario de base de datos almacenado en
sysusuarios.uid.

El identificadorDeSeguridad de cada usuario se almacena en sysusuarios.sid; por lo
tanto, se puede asociar de nuevo los usuarios a sus inicios de sesión
correspondientes. Resulta menos confuso si los miembros de las funciones
sysadmin, SecurityAdmin, db_owner y db_accessadmin utilizan el mismo
nombre de usuario de la base de datos en el inicio de sesión de SQL Server y en la
cuenta de Windows NT; sin embargo, no es obligatorio.

Obtener identificadores o cuentas de inicio de sesión

Cuando se conecte a SQL Server, utilice:

• SUSUARIO_SNAME para obtener el nombre de inicio de sesión de SQL Server

o cuenta de Windows NT asociados con un identificadorDeSeguridad.
• SUSUARIO_SID para obtener el identificadorDeSeguridad asociado con un

nombre de inicio de sesión de SQL Server o cuenta de Windows NT.
• SUSUARIO_SID() (SUSUARIO_SID especificado sin el parámetro

cuentaInicioSesión) para obtener el identificadorDeSeguridad de la conexión
actual, independientemente de si se utiliza la Autenticación de SQL Server o la
Autenticación de Windows NT.

• La función SYSTEM_USUARIO de SQL-92 para obtener la cuenta de
Windows NT de una conexión de Autenticación de Windows NT o el nombre de
inicio de sesión de SQL Server de una conexión de Autenticación de SQL
Server. En Transact-SQL, SYSTEM_USUARIO se implementa como sinónimo
de SUSUARIO_SNAME() (SUSUARIO_SNAME especificado sin el parámetro
identificadorDeSeguridad).

En SQL Server, las funciones que devuelven nombres de inicio de sesión o cuentas
funcionan de esta forma:

• SUSUARIO_SNAME(identificadorDeSeguridad)
 SUSUARIO_SNAME puede tomar:

• El identificadorDeSeguridad de una cuenta o grupo de Windows NT, en cuyo

caso devuelve el nombre de la cuenta o grupo de Windows NT.
• El falso identificadorDeSeguridad generado para un inicio de sesión de SQL

Server, en cuyo caso devuelve el nombre de inicio de sesión de SQL Server.

Si no se especifica el identificadorDeSeguridad de una conexión realizada con la
Autenticación de Windows NT, SUSUARIO_SNAME devuelve el nombre de la
cuenta de Windows NT asociada con la conexión. Si se realizó la conexión con la
Autenticación de SQL Server, SUSUARIO_SNAME devuelve el inicio de sesión
de SQL Server asociado con la conexión.

Si se especificó un IdUsuarioSistema en lugar de un identificadorDeSeguridad,
SUSUARIO_SNAME devuelve NULL.

• SUSUARIO_NAME(IdUsuarioSistema)

Esta función se admite para mantener la compatibilidad con versiones anteriores.
Utilice SUSUARIO_SNAME cuando se conecte a SQL Server SUSUARIO_NAME
puede tomar:

• El IdUsuarioSistema generado para una cuenta o grupo de Windows NT, en

cuyo caso devuelve el nombre de la cuenta o grupo de Windows NT.
• El IdUsuarioSistema generado para un inicio de sesión de SQL Server, en cuyo

caso devuelve el nombre de inicio de sesión de SQL Server.

Si no se especificó IdUsuarioSistema en una conexión realizada con Autenticación
de Windows NT, SUSUARIO_NAME devuelve NULL. Si se realizó la conexión
con Autenticación de SQL Server, SUSUARIO_NAME devuelve el inicio de sesión
de SQL Server asociado con la conexión.

Si se especificó identificadorDeSeguridad en lugar de IdUsuarioSistema,
SUSUARIO_NAME devuelve NULL.

• SUSUARIO_SID(‘cuentaInicioSesión’)

Esta función se admite para mantener la compatibilidad con versiones anteriores.
Utilice SUSUARIO_SID cuando se conecte a SQL Server cuentaInicioSesión puede
ser:

• Un nombre de cuenta o grupo de Windows NT, en cuyo caso SUSUARIO_SID

devuelve el identificadorDeSeguridad de Windows NT de la cuenta o grupo de
Windows NT.

• Un nombre de inicio de sesión de SQL Server, en cuyo caso SUSUARIO_SID
devuelve el falso identificadorDeSeguridad generado para ese nombre de inicio
de sesión de SQL Server.

Si no se especifica cuentaInicioSesión en una conexión realizada con la
Autenticación de Windows NT, SUSUARIO_SID devuelve el
identificadorDeSeguridad de Windows NT asociado con la conexión. Si se
realizó la conexión con la Autenticación de SQL Server, SUSUARIO_SNAME
devuelve el falso identificadorDeSeguridad asociado con la conexión.

• SYSTEM_USUARIO

Esta función de SQL-92 se implementa como sinónimo de SUSUARIO_SNAME()
(SUSUARIO_SNAME especificado sin el parámetro identificadorDeSeguridad) en
Transact-SQL.

Obtener nombres de usuario de base de datos o identificadores de usuario

Cuando se conecte a SQL Server utilice:

• USUARIO_ID para obtener el identificador de usuario de base de datos asociado

con un nombre de usuario de base de datos.
• USUARIO_ID() para obtener el identificador de usuario de base de datos asociado

con la conexión actual.

• USUARIO_NAME para obtener el nombre de usuario de base de datos asociado
con un identificador de usuario de base de datos.

• Una de las funciones de SQL-92, CURRENT_USUARIO o SESSION_USUARIO,
para obtener el nombre de usuario de base de datos asociado con la conexión actual.
En Transact-SQL, estas funciones se implementan como sinónimo de
USUARIO_NAME() (USUARIO_NAME especificado sin el parámetro
IdUsuarioBaseDatos). La función USUARIO de Transact-SQL también se
implementa como sinónimo de USUARIO_NAME().

SQL-92 tiene en cuenta las instrucciones SQL que se codifican en módulos de SQL
y pueden tener identificadores de autorización diferentes del identificador de
autorización del usuario que se ha conectado a una base de datos de SQL. SQL-92

especifica que SESSION_USUARIO siempre devuelva el identificador de
autorización del usuario que realizó la conexión. CURRENT_USUARIO devuelve
el identificador de autorización del módulo de SQL para las instrucciones ejecutadas
desde un módulo de SQL o del usuario que realizó la conexión si las instrucciones
SQL no se ejecutaron desde un módulo de SQL.

Si el módulo de SQL no tiene un identificador de autorización independiente, SQL-
92 especifica que CURRENT_USUARIO devuelva el mismo valor que
SESSION_USUARIO. Microsoft SQL Server no tiene identificadores de
autorización independientes para módulos de SQL; por lo tanto,
CURRENT_USUARIO y SESSION_USUARIO siempre son el mismo. La función
USUARIO está definida por SQL-92 como función para mantener la compatibilidad
con versiones anteriores para aplicaciones escritas en versiones anteriores del
estándar. Se especifica que devuelva el mismo valor que CURRENT_USUARIO.

En SQL Server, la función que devuelve nombres de inicio de sesión o cuentas funciona
de esta forma:

• USUARIO_ID(‘nombreUsuarioBaseDeDatos’)

USUARIO_ID devuelve el identificador de usuario de base de datos asociado con
el nombre de usuario de base de datos especificado. Si no se especifica
nombreUsuarioBaseDeDatos, USUARIO_ID devuelve el identificador de usuario
de base de datos asociado con la conexión actual.

• USUARIO_NAME(IdUsuarioBaseDeDatos)

USUARIO_NAME devuelve el nombre de usuario de base de datos asociado con el
identificador de usuario especificado. Si no se especifica IdUsuarioBaseDeDatos,
USUARIO_NAME devuelve el nombre de usuario de base de datos asociado con la
conexión actual.

• CURRENT_USUARIO, SESSION_USUARIO, USUARIO

Estas funciones son sinónimos de USUARIO_NAME() (USUARIO NAME
especificado sin el parámetro IdUsuarioBaseDeDatos).

Funciones de conversión

Use las funciones de conversión, CAST y CONVERT, para convertir expresiones de un
tipo de datos a otro, cuando Microsoft® SQL Server™ no realice automáticamente estas
conversiones. Estas funciones de conversión se usan también para obtener varios
formatos especiales de datos. Cualquiera de las funciones de conversión se puede
utilizar en la lista de selección, en la cláusula WHERE y en cualquier lugar que se
permita una expresión.

Use CAST en lugar de CONVERT si desea que el código del programa Transact-SQL
cumpla con SQL-92. Use CONVERT en lugar de CAST para aprovechar la
funcionalidad del estilo de CONVERT.

Cuando se usa CAST o CONVERT, se necesitan dos clases de información:

• La expresión que se va a convertir (por ejemplo, un informe de ventas
necesitaría que los datos de ventas se convirtieran desde datos de moneda a
datos de caracteres).

• El tipo de datos al que se va a convertir la expresión dada, por ejemplo,
varchar o cualquier otro tipo de datos suministrado por SQL Server.

A menos que guarde el valor convertido, una conversión sólo será válida mientras dure
la función CAST o CONVERT.

En este ejemplo se usa CAST en la primera instrucción SELECT y CONVERT en la
segunda instrucción SELECT para convertir la columna title a una columna char(50)
con el fin de hacer que los resultados sean más fáciles de leer.

USE pubs
SELECT CAST(title AS char(50), ytd_sales
FROM titles
WHERE type = 'trad_coAceptar'

- O bien -
USE pubs
SELECT CONVERT(char(50), title), ytd_sales
FROM titles
WHERE type = 'trad_coAceptar'
Éste es el conjunto de resultados de las consultas:
ytd_sales
--- -----------
Onions, Leeks, and Garlic: CoAceptaring Secrets of the 375
Fifty Years in Buckingham Palace Kitchens 15096
Sushi, Anyone? 4095
(3 row(s) affected)

En el siguiente ejemplo, la columna ytd_sales, una columna int, se convierte a una
columna char(20) de forma que se pueda usar con el predicado LIKE.

USE pubs
SELECT title, ytd_sales
FROM titles
WHERE CAST(ytd_sales AS char(20)) LIKE '15%'
AND type = 'trad_coAceptar'

Éste es el conjunto de resultados:

title ytd_sales
--- ---------
Fifty Years in Buckingham Palace Kitchens 15096

(1 row(s) affected)

SQL Server controla automáticamente ciertas conversiones de tipos de datos. Por
ejemplo, si compara una expresión char y una datetime, una smallint y una int, o
expresiones char de distintas longitudes, SQL Server las convierte automáticamente.
Esto se denomina conversión implícita. No es necesario que use la función CAST para
realizar estas conversiones. Sin embargo, se puede usar CAST:

• Cuando dos expresiones son exactamente del mismo tipo de datos.

• Cuando dos expresiones son convertibles implícitamente.
• Cuando es necesario convertir explícitamente los tipos de datos.

Si intenta realizar una conversión que no es posible (por ejemplo, convertir una
expresión char que incluya letras a int), SQL Server muestra un mensaje de error.
Si no especifica ninguna longitud cuando se convierte al tipo de datos, SQL Server
suministra automáticamente la longitud 30.

Al convertir a datetime o smalldatetime, SQL Server rechaza todos los valores que no
reconoce como fechas (incluidas las fechas anteriores al 1 de enero de 1753). Pueden
convertir valores datetime a smalldatetime cuando la fecha se encuentre en el intervalo
adecuado (1 de enero de 1900 al 6 de junio del 2079). El valor de la hora se redondea al
minuto más cercano.

Convertir a bit cambia cualquier valor distinto de cero a 1.

Cuando convierta a money o smallmoney, se supone que los enteros son unidades de
moneda. Por ejemplo, el valor entero 4 se convierte al equivalente de moneda de 4
dólares (para us_english, el idioma predeterminado). Los números situados a la derecha
del separador decimal de los valores de punto flotante se redondean a cuatro lugares
decimales para los valores money. Las expresiones de los tipos de datos char o
varchar que se están convirtiendo a un tipo de datos entero deben constar sólo de
dígitos y un signo opcional más o menos (+ o -). Los blancos situados a la izquierda se
pasan por alto. Las expresiones de los tipos de datos char o varchar que se convierten a
money pueden incluir también un separador decimal opcional y un signo de dólar a la
izquierda ($).

Las expresiones de tipos de datos char o varchar que se están convirtiendo a float o
real pueden incluir también notación exponencial opcional (e o E, seguido de un signo
opcional + o - y, a continuación, un número).

Cuando se convierten expresiones de caracteres a un tipo de datos de un tamaño
distinto, los valores demasiado grandes para el nuevo tipo de datos se truncan, y SQL
Server muestra un asterisco (*) tanto en la herramienta osql como en el Analizador de
consultas de SQL Server. Cuando las expresiones numéricas son demasiado grandes
para que se presente el nuevo tipo de datos, se truncan los valores. A continuación se
muestra un ejemplo del truncamiento de caracteres:

USE pubs
SELECT SUBSTRING(title, 1, 25) AS Title, CONVERT(char(2), ytd_sales)
FROM titles
WHERE type = 'trad_coAceptar'
Éste es el conjunto de resultados:
Title
------------------------- --
Onions, Leeks, and Garlic *
Fifty Years in Buckingham *
Sushi, Anyone? *
(3 row(s) affected)

Al convertir tipos de datos en los que el tipo de datos de destino tiene menos
separadores decimales que el tipo de datos de origen, se trunca el valor. Por ejemplo, el
resultado de CAST(10,3496 AS money) es $10,35.

Puede convertir explícitamente datos text a char o varchar, y datos image a binary o
varbinary. Puesto que estos tipos de datos están limitados a 8.000 caracteres, estará
limitado a la longitud máxima de los tipos de datos character y binary, es decir, 8.000
caracteres. Puede convertir explícitamente datos ntext a nchar o nvarchar, pero la
longitud máxima es de 4.000 caracteres. Si no especifica la longitud, el valor convertido
tiene una longitud predeterminada de 30 caracteres. No se admite la conversión
implícita.

El parámetro estilo

El parámetro estilo de CONVERT proporciona una amplia variedad de formatos de
presentación cuando se convierten datos datetime a char o varchar. El número que se
suministra como el parámetro estilo determina la forma en la que se muestran los datos
datetime. El año se puede mostrar con dos o con cuatro dígitos. De forma
predeterminada, SQL Server suministra un año de cuatro dígitos. Para mostrar un año
de cuatro dígitos que incluya el siglo (aaaa), incluso si el año se guardó con un formato
de dos dígitos, agregue 100 al valor de estilo para obtener un año de cuatro cifras.

En este ejemplo se muestra CONVERT con el parámetro estilo.
SELECT CONVERT(char(12), GETDATE(), 3)
Esta instrucción convierte la fecha actual al estilo 3, dd/mm/aa.

Expresiones

Una expresión es una combinación de identificadores, valores y operadores que
Microsoft® SQL Server™ puede evaluar para obtener un resultado. Los datos se
pueden usar en varios sitios distintos cuando se cambian o se tiene acceso a los datos.
Las expresiones se pueden usar, por ejemplo, como parte de los datos que se van a
recuperar (en una consulta) o como una condición para buscar los datos que cumplan un
conjunto de criterios.

Una expresión puede ser una:
• Constante.
• Función.
• Nombre de columna.
• Variable.
• Subconsulta.
• CASE, NULLIF o COALESCE.

Una expresión también puede generarse a partir de la combinación de estas entidades y
operadores.

En la siguiente instrucción SELECT, por cada fila del conjunto de resultados, SQL
Server puede resolver LastName como un valor único, con lo que constituye una
expresión.

SELECT LastName
FROM Northwind..Employees

Una expresión puede ser también un cálculo, como, por ejemplo (price * 1.5) o (price +
sales_tax).

En una expresión, incluya los valores de caracteres de fecha entre comillas simples. En
la siguiente instrucción SELECT, el literal de carácter B% usado como patrón para la
cláusula LIKE debe estar entre comillas simples:

SELECT LastName, FirstName
FROM Northwind..Employees
WHERE LastName LIKE 'B%'

En la siguiente instrucción SELECT, el valor de fecha se incluye entre comillas:

SELECT *
FROM Northwind..Orders
WHERE OrderDate = 'Sep 13 1996'

En este ejemplo, se usa más de una expresión en la consulta. Por ejemplo, col1,
SUBSTRING, col3, price y 1.5 son expresiones.

SELECT col1, SUBSTRING('This is a long string', 1, 5), col3, price *
1.5
FROM mytable

Utilizar operadores en expresiones

Los operadores permiten realizar operaciones aritméticas, comparaciones,
concatenaciones o asignaciones de valores. Por ejemplo, puede probar si la columna
country con datos de clientes está rellena (o no es NULL).

En las consultas, cualquier persona que pueda ver los datos de la tabla que necesitan ser
usados con algún tipo de operador puede realizar operaciones. Antes de poder cambiar
los datos correctamente, necesita los permisos adecuados.

Los operadores se usan en Microsoft® SQL Server™ para:

• Cambiar datos, permanente o temporalmente.
• Buscar filas o columnas que cumplan una condición determinada.
• Implementar una decisión entre columnas de datos o entre expresiones.
• Probar determinadas condiciones antes de iniciar o confirmar una transacción, o

antes de ejecutar determinadas líneas de código.

SQL Server tiene siete categorías de operadores.

Para realizar este tipo de
operación Use esta categoría de operador

Comparar un valor con otro valor
o una expresión. Operadores de comparación

Probar si una condición es cierta,
como AND, OR, NOT, LIKE,
ANY, ALL o IN.

Lógicos

Suma, resta, multiplicación,
división, módulo. Operadores aritméticos

Realizar una operación en un
operando, como positivo o
negativo, o el complementario.

Unario.

Convertir temporalmente valores
numéricos normales (como 150)
a enteros y realizar aritmética de
bits (0 y 1).

Operadores binarios

Combinar permanente o
temporalmente dos cadenas (de
caracteres o de datos binarios) en
una cadena.

Operador de concatenación de
cadenas

Asignar un valor a una variable, o
asociar una columna de un
conjunto de resultados con un
alias.

Asignación

Una expresión se puede generar a partir de varias expresiones más pequeñas
combinadas mediante operadores. En estas expresiones complejas, los operadores se
evalúan en un orden que se basa en la definición de SQL Server de la preferencia de
operadores. Los operadores con mayor preferencia se ejecutan antes que los operadores
con menor preferencia.

Operadores aritméticos

Los operadores aritméticos se pueden usar para realizar cualquier cálculo aritmético,
como:

• Suma.
• Resta.
• Multiplicación.
• División.
• Módulo (el resto de una operación de división)

A continuación se proporciona información acerca de los operadores aritméticos:

• Cuando hay más de un operador aritmético en una expresión, primero se calculan las

multiplicaciones, divisiones y módulos, y, después, las restas y las sumas.
• Cuando todos los operadores aritméticos de una expresión tienen el mismo nivel de

preferencia, el orden de ejecución es de izquierda a derecha.
• Las expresiones entre paréntesis tienen preferencia sobre el resto de las operaciones.

La siguiente instrucción SELECT resta la parte de las ventas del año que recibe el autor
(ventas * porcentaje de derechos de autor / 100) del total de ventas. El resultado es la
cantidad de dinero que recibe el editor. El producto de ytd_sales y royalty se calcula

primero porque el operador es una multiplicación. A continuación, el total se divide por
100. Este resultado se resta de ytd_sales.

USE pubs
SELECT title_id, ytd_sales - ytd_sales * royalty / 100
FROM titles
Para conseguir una mayor claridad, puede usar paréntesis:
USE pubs
SELECT title_id, ytd_sales - ((ytd_sales * royalty) / 100)
FROM titles

También puede usar paréntesis para cambiar el orden de ejecución. Los cálculos entre
paréntesis se evalúan primero. Si los paréntesis están anidados, el cálculo con una
anidación más profunda es el que tiene preferencia. Por ejemplo, el resultado y
significado de la consulta anterior se pueden cambiar si usa paréntesis para obligar a que
la resta se evalúe antes que la multiplicación:

USE pubs
SELECT title_id, (ytd_sales - ytd_sales) * royalty / 100
FROM titles

Operadores binarios

Los operadores binarios se usan en los datos int, smallint o tinyint. El operador ~
(NOT binario) puede usar también datos bit. Todos los operadores binarios realizan una
operación en uno o más valores enteros especificados en expresiones binarias de las
instrucciones de Transact-SQL. Por ejemplo, el operador ~ (NOT binario) cambia los 1
binarios a 0, y los 0 a 1. Para comprobar las operaciones binarias, puede convertir o
calcular los valores decimales.

Por ejemplo, suponga que desea sumar 150 y 75, pero no sólo desea el valor decimal de
225, sino que desea usar aritmética binaria (suma de 0 y 1). Para este fin, use el
operador binario AND (&).

Si está almacenando datos de enteros (valores decimales normales, como el 150 y 75
mencionado anteriormente) y desea realizar una conversión interna para realizar
cálculos binarios, use los operadores binarios. Los operadores binarios también son
útiles para obtener un valor NOT que no sea necesariamente el opuesto exacto.

Operadores de comparación

Los operadores de comparación se usan con los datos de caracteres, numéricos o de
fecha, y se pueden utilizar en las cláusulas WHERE o HAVING de una consulta. Los
operadores de comparación dan como resultado un tipo de datos Boolean: devuelven
TRUE o FALSE según el resultado de la condición probada.

Por ejemplo, para calcular una bonificación para aquellos empleados que han sido
contratados antes del 15 de marzo de 1998, el cálculo de si la hire_date (fecha de
contratación) de un empleado es menor o igual al 15 de marzo de 1998 proporcionará
una lista de los empleados que deben recibir la bonificación.
Los operadores de comparación válidos son:

• > (mayor que).
• < (menor que).
• = (igual).
• <= (menor o igual que).
• >= (mayor o igual que).
• != (distinto de).
• != (distinto de).
• !< (no menor que).
• !> (no mayor que).

Los operadores de comparación se pueden usar también en la lógica del programa para
comprobar una condición. Por ejemplo, si la columna del país es RU en lugar de
España, puede que se apliquen distintas tarifas de envío. En este caso, se usan juntos
una combinación de un operador de comparación, una expresión (el nombre de
columna), un literal (‘RU’) y una palabra clave de programación de control de flujo
(IF), para conseguir este propósito.

Cualquier persona que tenga acceso a los datos reales (para consultas) puede usar los
operadores de comparación en consultas adicionales. En las instrucciones de
modificación de datos, se recomienda que sólo use los operadores de comparación si
sabe que dispone de los permisos adecuados y que los datos serán cambiados sólo por
un pequeño grupo de personas (para mantener la integridad de los datos).

Las consultas usan también comparaciones de cadena para comparar el valor de una
variable local, cursor o columna con una constante. Por ejemplo, para imprimir todas las
filas de cliente si el país es el Reino Unido. En la tabla se muestran ejemplos de
comparación de cadenas entre datos Unicode y no Unicode; ST1 es char y ST2 es
nchar.

Comparación Descripción

ST1 = ST2 Equivalente a CONVERT(nchar, ST1) =
ST2 o CAST(ST1 como nchar) = ST2.

ST1 = 'cadena no Unicode' Comparación normal de cadena de SQL-92.

ST2 = 'cadena no Unicode'
Equivalente a ST2 = CONVERT(nchar,
'cadena no Unicode') o ST2 =
CAST('cadena no Unicode' AS nchar).

ST2 = N'cadena Unicode' Comparación Unicode.
CONVERT(nchar, ST1) =
ST2
o
CAST(ST1 AS nchar) = ST2

Comparación Unicode.

ST1 = CONVERT(char,
ST2)
o
ST1 = CAST(ST2 AS char)

Comparación normal de cadena de SQL-92.

N'' (cadena vacía Unicode
entre paréntesis) Cadena vacía.

'' (cadena vacía no Unicode) Una cadena vacía o una cadena que
contiene un carácter blanco (dependiendo

de la configuración de SQL-92).

Operador de concatenación de cadenas

El operador de concatenación de cadenas es el signo más (+). Puede combinar, o
concatenar, dos o más cadenas de caracteres en una única cadena. También puede
concatenar cadenas binarias. A continuación se muestra un ejemplo de concatenación:

SELECT ('abc' + 'def')

Éste es el conjunto de resultados:

abcdef
(1 row(s) affected)

Esta consulta muestra los nombres de los autores con direcciones de California bajo la
columna Moniker, en el orden apellido, nombre, con una coma y un espacio detrás del
apellido.

USE Northwind
GO
SELECT LastName + ', ' + FirstName AS Moniker
FROM Employees
WHERE Region = 'WA'
Éste es el conjunto de resultados:
Moniker

Davolio, Nancy
Fuller, Andrew
Leverling, Janet
Peacock, Margaret
Callahan, Laura
(15 row(s) affected)

Otros tipos de datos, como datetime y smalldatetime, deben convertirse a cadenas de
caracteres con la función de conversión CAST antes de que se puedan concatenar con
una cadena.

USE pubs
SELECT 'The due date is ' + CAST(pubdate AS varchar(128))
FROM titles
WHERE title_id = 'BU1032'
Éste es el conjunto de resultados:

The due date is Jun 12 1991 12:00AM
(1 row(s) affected)
La cadena vacía ('') se evalúa como un espacio individual:
SELECT 'abc' + '' + 'def'
Éste es el conjunto de resultados:

abcdef
(1 row(s) affected)

Nota Que una cadena vacía ('') se interprete como un carácter blanco individual o como
un carácter vacío depende de la configuración del nivel de compatibilidad de
sp_dbcmptlevel. Para este ejemplo, si sp_dbcmptlevel es 65, los literales vacíos se
tratan como un blanco individual.

Valores NULL

NULL indica que el valor es desconocido. Es distinto de un valor vacío o cero. Dos
valores NULL no son iguales. La comparación entre dos valores NULL, o entre un
valor NULL y cualquier otro valor, tiene un resultado desconocido porque el valor de
cada NULL es desconocido.

Los valores NULL indican normalmente que el dato es desconocido, no es aplicable o
que se agregará posteriormente. Por ejemplo, la inicial de un cliente puede que no sea
conocida en el momento en que éste hace un pedido.

A continuación se muestra información acerca de los valores NULL:

• Para comprobar valores NULL en una consulta, use IS NULL o IS NOT NULL en

la cláusula WHERE.
• Cuando se visualizan los resultados en el Analizador de consultas de SQL Server,

los valores NULL se muestran como (null) en el conjunto de resultados.
• Los valores NULL se pueden insertar en una columna si se indica explícitamente

NULL en una instrucción INSERT o UPDATE, se deja fuera una columna de una
instrucción INSERT, o cuando se agrega una columna nueva a una tabla existente
con la instrucción ALTER TABLE.

• Los valores NULL no se pueden usar en la información necesaria para distinguir
una fila de una tabla de una fila de otra tabla (por ejemplo, en claves principales o
externas).

En el código del programa, puede comprobar la existencia de valores NULL de forma
que determinados cálculos sólo se realicen en filas con datos válidos (o no NULL). Por
ejemplo, un informe puede imprimir la columna de seguridad social sólo si en la
columna hay datos que no son NULL. La eliminación de los valores NULL cuando
realice cálculos puede ser importante porque algunos (como, por ejemplo, un promedio)
pueden ser incorrectos si se incluyen columnas NULL.

Es posible que haya valores NULL en los datos, por lo que es una buena práctica crear
consultas e instrucciones de modificación de datos que eliminen los valores NULL o los
transformen en algún otro valor (si no desea que aparezcan en los datos).

Importante Para minimizar las tareas de mantenimiento y los posibles efectos en las
consultas o informes existentes, se recomienda que disminuya al mínimo el uso de los
valores NULL. Planee sus consultas e instrucciones de modificación de datos de forma
que los valores NULL tengan un efecto mínimo.

Cuando hay valores NULL en los datos, los operadores lógicos y de comparación
pueden devolver un tercer resultado desconocido (UNKNOWN) en lugar de
simplemente TRUE (verdadero) o FALSE (falso). Esta necesidad de una lógica de tres
valores es el origen de muchos errores de la aplicación. Estas tablas destacan el efecto
de escribir comparaciones con NULL.

AND con valor TRUE UNKNOWN FALSE
TRUE TRUE UNKNOWN FALSE
UNKNOWN UNKNOWN UNKNOWN FALSE
FALSE FALSE FALSE FALSE

OR con valor TRUE UNKNOWN FALSE
TRUE TRUE TRUE TRUE
UNKNOWN TRUE UNKNOWN UNKNOWN
FALSE TRUE UNKNOWN FALSE

NOT Evalúa a
TRUE FALSE
UNKNOWN UNKNOWN
FALSE TRUE

El estándar SQL-92 escribe las palabras clave IS NULL e IS NOT NULL para
comprobar la presencia de valores NULL.

IS NULL Evalúa a IS NOT NULL Evalúa a
TRUE FALSE TRUE TRUE
NULL TRUE NULL FALSE
FALSE FALSE FALSE TRUE

Transact-SQL ofrece también una ampliación para el procesamiento de los valores
NULL. Si la opción ANSI_NULLS está desactivada, las comparaciones entre los
valores NULL, como NULL = NULL, da como resultado TRUE. Las comparaciones
entre NULL y cualquier valor de datos da como resultado FALSE.

Miscelaneo

Utilizar comentarios

Los comentarios son cadenas de texto que no se ejecutan incluidas en el código de un
programa; también se conocen como observaciones. Los comentarios se pueden usar
para documentar código o partes deshabilitadas temporalmente de instrucciones y lotes
de Transact-SQL que se están diagnosticando.

La utilización de comentarios hace más fácil el mantenimiento futuro del código del
programa. Los comentarios se usan, a menudo, para guardar el nombre de un programa,
el nombre del autor y las fechas de los cambios importantes del código. Los

comentarios se pueden usar para describir cálculos complicados o para explicar
determinado método de programación.

Microsoft® SQL Server™ admite dos tipos de caracteres para indicar comentarios:

 (doble guión). Estos caracteres para los comentarios se pueden usar en la
misma línea que el código que se va a ejecutar o en una línea aparte.
Todo lo que se encuentre entre los dos guiones y el final de la línea es
parte del comentario. En el caso de que un comentario ocupe varias
líneas, los guiones dobles deben aparecer al principio de cada línea de
comentarios.

• /* … */ (par de caracteres barra diagonal y asterisco). Estos caracteres para los

comentarios se pueden usar en la misma línea que el código que se va a ejecutar, en
líneas separadas o, incluso, en el código ejecutable. Todo lo incluido entre el par de
apertura de comentario (/*) y el par de cierre de comentario (*/) se considera parte
del comentario.

En un comentario de varias líneas, el par de caracteres de apertura de comentario (/*)
debe iniciar el comentario, y el par de caracteres de cierre de comentario (*/) debe
finalizarlo. Ningún otro carácter de comentario debe aparecer en ninguna línea del
comentario.

Los comentarios /* */ de varias líneas no pueden dividirse en varios lotes. El comentario
completo debe estar contenido en un único lote. Por ejemplo, en el Analizador de
consultas de SQL Server y el programa osql, el comando GO indica el final de un lote.
Cuando las herramientas leen los caracteres GO en los dos primeros bytes de una línea,
envían todo el código desde el último GO al servidor como un lote. Si hay un GO al
inicio de una línea entre los delimitadores /* y */, cualquier delimitador de comentario
sin correspondencia será enviado con cada lote que, a su vez, desencadenará errores de
sintaxis. Por ejemplo, la siguiente secuencia de comandos contiene errores de sintaxis:

USE Northwind
GO
SELECT * FROM Employees
/* The
GO in this comment causes it to be brAceptaren in half */
SELECT * FROM Products
GO

Éstos son algunos comentarios válidos:

USE Northwind
GO
-- First line of a multiple-line comment.
-- Second line of a multiple-line comment.
SELECT * FROM Employees
GO
/* First line of a multiple-line comment.
Second line of a multipl-line comment. */
SELECT * FROM Products
GO
-- Using a comment in a Transact-SQL statement
-- during diagnosis.

SELECT EmployeeID, /* FirstName, */ LastName
FROM Employees
-- Using a comment after the code on a line.
USE Northwind
GO
UPDATE Products
SET UnitPrice = UnitPrice * .9 -- Try to build market share.
GO

A continuación se muestra información básica acerca de los comentarios:

• En los comentarios se pueden usar todos los caracteres o símbolos alfanuméricos.

SQL Server pasa por alto todos los caracteres de un comentario, aunque el
Analizador de consultas de SQL Server, osql e isql buscarán GO como los primeros
dos caracteres de las líneas de un comentario que ocupa varias.

• No hay longitud máxima para un comentario dentro de un lote. Un comentario se
puede componer de una o más líneas.

Utilizar palabras clave reservadas

Microsoft® SQL Server™ reserva ciertas palabras clave para su uso exclusivo. Por
ejemplo, la utilización de la palabra clave DUMP o BACKUP de Transact-SQL en una
sesión del Analizador de consultas de SQL Server u osql, indica a SQL Server que haga
una copia de seguridad de toda o de parte de una base de datos, o una copia de
seguridad del registro.

No se permite incluir las palabras clave reservadas de una instrucción de Transact-SQL
en ninguna parte que no sea donde define SQL Server. Ningún objeto de la base de
datos debe recibir un nombre que coincida con una palabra clave reservada. Si existe tal
nombre, siempre se debe hacer referencia al objeto usando identificadores delimitados.
Aunque este método permite la existencia de objetos cuyos nombres son palabras
reservadas, se recomienda que no ponga a los objetos de la base de datos ningún
nombre que coincida con el de una palabra reservada.

Entre las funciones de los administradores de la base de datos y del sistema o del
creador de la base de datos se encuentra, precisamente, la de comprobar la existencia de
palabras clave reservadas en el código de Transact-SQL y en los nombres de las bases
de datos.

Use una convención de nombres que evite la utilización de palabras clave reservadas. Si
el nombre de un objeto se parece a una palabra reservada clave, se pueden quitar del
mismo las consonantes o vocales; por ejemplo, un procedimiento que realiza
instrucciones BACKUP para todas las bases de datos definidas por el usuario se puede
llamar bckup.

Sinónimos

Los tipos de datos sinónimos se incluyen por compatibilidad con SQL-92.

Sinónimo Tipo de datos asignado al sistema
binary varying varbinary
char varying varchar
Character char
Character char(1)
character(n) char(n)
character varying(n) varchar(nn)
Dec decimal
double precision float
float[(n)] para n = 1-7 real
float[(n)] para n = 8-15 float
Integer int
national character(n) nchar(n)
national char(n) nchar(n)
national character varying(n) nvarchar(n)
national char varying(n) nvarchar(n)
national text ntext
numeric decimal

