Objects and Java
Building Object-Oriented, Multi-Threaded Applications with Java
by Bill Venners
Contents
Preface
Acknowledgments
Introduction

1. Introduction to Java
2. Classes and Objects
3. Expressions and Statements
4. Initialization and Cleanup
5. Packages and Access Specifiers
6. Composition and Inheritance
7. Polymorphism and Interfaces
8. Cloning, Collections, and Inner Classes
9. Exceptions
10. Threads
11. Applets and Graphics
12. AWT and Swing Components
13. Events and GUIs
14. I/O and Object Serialization
15. Network Programming
16. Remote Method Invocation (RMI)

Appendix A: Documentation Comments
Index

Objects and Java by Bill Venners
Chapter 2:
Classes and Objects
Objects and Java | Contents | Previous | Next
[bv: need an intro]

Abstraction

When you set out to design a Java program, you have to create abstractions. You are faced with a problem domain and (with luck) a specification, and you have to architect [bv: is architect a verb?] a solution. (The problem domain is the subject area of a particular programming effort, such as "accounting," "elevator control," or "word processing.") Given that Java is an object-oriented language, you will likely want to perform an object-oriented design. In the process, you will end up with abstractions in the form of objects, types, attributes, and behaviors.

The object-oriented design process involves the following three tasks:

· dividing the problem domain into types of objects,

· modeling the relationships between the types, and

· modeling the attributes and behaviors of each type.

These tasks are not listed in any particular order. Most likely, you will perform these tasks iteratively throughout the design process.

In an object-oriented design, you identify the fundamental objects of the problem domain, the "things" involved. You then classify the objects into types by identifying groups of objects that have common characteristics and behaviors. The types of objects you identify in the problem domain become "types" in your solution. The program you write will create and manipulate objects of these types. By naming the types in your solution after the types in the problem, you build a vocabulary for expressing the solution out of the language you would use to describe the problem.

In addition to types that correspond to elements in the problem, the "problem domain types," your solution will likely have types that don't correspond to anything in the problem domain. For example, most programs will require types that deal with data management and user interface. An example of a data-management type is a hash table. You might use a hash table object in your program to speed lookup of a set of objects, even though there is no hash table object in the problem domain. The objects you are looking up in the hash table, however, might represent objects that exist in the problem domain. Some examples of user interface types might be button, window, and dialog.

The fundamental task of abstraction in an object-oriented design is to identify objects in the problem domain and then to classify the objects into types. As you divide the problem domain into types, you will to some degree model the relationships between the types as well. Objects can have three kinds of relationships:

· the has-a relationship

· the is-a relationship

· the uses-a relationship

The has-a relationship means that one type of object contains another or is composed of another. Some examples are: a car has-an engine, a bicycle has-a wheel, and a coffee cup has coffee. The has-a relationship is modeled with composition, which is discussed in Chapter 6.

The is-a relationship means that one type of object is a more specific version of a general type. Some examples are: a car is-a vehicle, a bicycle is-a vehicle, and a coffee cup is-a cup. The is-a relationship is modeled with inheritance, which is also discussed in Chapter 6.

The uses-a relationship means that during some activity, one type of object uses another type of object. Some examples are: a car uses-a squeegee (during a window-washing activity), a bicycle uses-a pump (during a tire-pumping activity), and a coffee cup uses-a stirrer (during a stirring activity). The uses-a relationship will be discussed further in Chapter ?? [bv: which chapter?].

Along with dividing the problem domain into types and modeling their relationships, you must define attributes and behaviors that will characterize each type in the solution.

The attributes of a type define the nature of the state of objects of that type. An object's state is composed of values for all the attributes of the type. For example, two possible attributes for a bicycle type are speed and direction. An object of type bicycle would therefore have a state that is composed of values for speed and direction. Note that an object's state (the values of its attributes) can change over the lifetime of the object. A bicycle object, for example, could have a state of 15 mph and north at one point in time. Later, that same object could have state 10 mph and south.

In object-oriented thinking, interaction between objects is modeled as messages sent between objects and the action that objects take as a result. When you model the behavior of a type you define a set of messages that objects of that type will accept, and the actions that objects of that type will take upon receipt of those messages. The set of accepted messages and the resulting actions constitute services that are offered by the object.

As the designer of a type, you decide what an object of that type will do when it receives a message. Messages contain information, and an object can use the information contained in a received message along with the information represented by its own current state, to decide what to do. It may do nothing. It may send messages to other objects. It may change its own state. It may return some information to the message sender. Or it may do all of these things.

In computer science circles, the term "message" is often associated with asynchronous messaging, in which received messages can queue up and be processed by the recipient at some later time. In this object-oriented context, however, a message is simply a request coupled with some information that is passed to an object. In general, an object begins to process a message immediately upon receipt and potentially returns a reply to the sender. A message can have an effect that is delayed (similar to asynchronous messaging), but creating such a delayed effect is an option of the message recipient.

These design activities are processes of abstraction because out of all the elements of the problem domain, you are selecting only those that are important. As a result, in any one design you will likely ignore many elements of the problem domain. In your solution, you won't model every type of object you can possibly identify in the problem domain, only those that matter to your solution. Likewise, you won't model every attribute and every behavior of the types of objects you have chosen to represent in your solution, just those attributes and behaviors that are important to your solution. In a different problem domain, you might model different attributes and behaviors of the same types of objects. Thus, you are abstracting: pulling out what you feel is important about the problem domain, and using only those elements in your solution.

Designing a Virtual Café

As an example of an object-oriented design with the Java programming language, imagine you are designing a virtual café, a place in cyberspace where guests can sit at small tables, sipping virtual cups of coffee, and chatting with one another. The primary function of the café is that of a chat room: a place where people separated by (potentially vast) physical distances, but connected to the same network, can get together and converse. To make your chat room more inviting, you want it to look like a café. You want each participant to see graphical representations ("avatars") of the other people in the café. And to make the participant's experience more real, you want the people to be able to interact with certain items in the café, such as tables, chairs, and cups of coffee.

Identifying Types

To start your design process, visualize your virtual café on an average busy day. What objects do you see? Perhaps you see guests, tables and chairs, coffee cups, coffee, pitchers of milk, packets of sugar, coffee stirrers, and the café itself. These are the types of objects in your problem domain. By describing them in a human language, you are already classifying them, grouping related objects together. You may have 100 different coffee cups in your café--all distinct objects--but you place all 100 of them into the "coffee cup" category when you say, "I see 100 coffee cups." This is the first step in an object- oriented design: identifying objects in the problem domain, and grouping them by type.

As the designer, you must decide which objects to group into which categories. Just as describing a scene in human language is not an exact science--you have to pull out what's important and focus your description on that--neither is object-oriented design an exact science. There are many ways to slice up a given problem domain into objects and types. Because of this, you must focus on the types of objects you think will be most important in your solution. These will be the types that have the greatest interaction. For example, in the case of your virtual café, you may have artsy drawings hanging on the walls, but if those drawings do nothing but hang there, then perhaps they shouldn't be awarded with their own type. They can just be a characteristic of your café type.

So what types of objects are the most important in the virtual café? Ask yourself what kind of objects are involved in the activities of your café. Guests sit on chairs at tables and chat with their neighbors. They buy cups of coffee, add milk or sugar to them, swirl the result with a stirrer, and drink. If these are the primary activities that go on in your problem domain, then the types of objects involved should be what you most concern yourself with in your solution: guests, tables, chairs, coffee cups, coffee, milk, sugar, stirrers, and the café itself.

Each of these objects interacts with other objects. Chairs may host a guest or be empty. Tables can have different numbers of chairs. Both tables and chairs can be moved around the café. Tables can be moved together to accommodate large groups of guests. Coffee cups accept coffee, milk, sugar, and a swirling stirrer. They also release their contents sip by sip to the drinker, or can spill their contents all at once onto the table, onto the floor of the café, or more alarmingly, onto a guest.

Although the objects you group together will share characteristics and behaviors, they will usually not be identical copies of each other. There are many objects in your everyday experience that you would call coffee cups--some are made of styrofoam, some of ceramic; some are big, some small--but you still recognize them as coffee cups because of the characteristics and behaviors they have in common. Mainly, they hold coffee for you to drink. They allow you to add extras, such as sugar or milk, and to insert a stirrer to swirl the components into the perfect drink to suit your palette. If you knock them over, they'll spill their contents. The first step of object-oriented design, therefore, is creating abstract categories, such as "coffee cup", and placing different objects, each of which may have their own unique qualities, into the same category.

The first part of the process of abstraction usually involves not simply deciding upon lone types, but upon inheritance hierarchies of types. An inheritance hierarchy is a diagram showing the inheritance (is-a) relationships between types. Thus, as you determine types you will usually model is-a relationships with inheritance. To start with, however, this discussion will keep it simple and just focus on lone types. Inheritance will be discussed in Chapter 6.

Defining Attributes

Once you have identified the main types of objects you will use in your solution, you must next define the internal nature of each type: you must model attributes and behaviors. Here you focus once again on what's important to your particular solution. There are many ways to describe a coffee cup. You can, for instance, talk about its color, its volume, its shape, the amount of coffee it currently contains, whether or not it has a handle, its material, its current orientation with respect to the planet Venus, its place of manufacture, or the name of the last three people who drank out of it. Not all of a coffee cup's characteristics will be important in your solution. You must, as the designer, choose the attributes of a type of object that are most important, and model only those. You may, for example, decide that color, current amount of coffee, and position in the café are the only attributes of coffee cups that are important in your solution.

As mentioned previously, an object has state and behavior, and the nature of an object's state is defined by its attributes. For example, the nature of a coffee cup object's state could be its color, the amount of coffee it contains, and its position in the café. Different coffee cup objects can have different colors, be filled with different amounts of coffee, and be located in different places in the café. Thus, "coffee cup" is a type; "the red coffee cup that is currently filled with 38 milliliters of coffee and is sitting on the table in the corner of the café" is an object. In this case, "color", "amount of coffee", and "position" are attributes of the coffee cup type. "Red", "38 ml", and "sitting on the corner table" comprise the state of a particular coffee cup object.

Attributes Versus Types

Even though the objects you classify as a type will share certain characteristics and behaviors, they will usually differ in some ways too. Attributes model the variation that is allowed among different objects of the same type. An object maintains a value for each attribute defined in its type. All the values taken together comprise the object's state. In the previous example, the coffee cup object's value for the color attribute was red. Its value for the amount of coffee attribute was 38 ml. Its value for the position attribute was "sitting on the corner table." The object's state, which is composed of all its attribute values, was: red, 38ml, and "sitting on the corner table." Later, the same coffee cup could have a changed state: red, empty, and "sitting on the corner table." A different coffee cup object could have a different state, such as: yellow, 200 ml, and "hovering in midair."

During the lifetime of an object, an attribute value may either fluctuate or remain constant. An example of an attribute value that may fluctuate during the object's lifetime is the amount of coffee contained in a coffee cup object. You may add and remove coffee many times during the lifetime of a coffee cup object, resulting in an "amount of coffee" attribute value that changes over time. Another example of an attribute value that may fluctuate is position. When a coffee cup object is created, its position attribute would be initialized to the cup's starting position. As the cup moves around the café during its lifetime, its position attribute would change to reflect its changed positions in the café.

An example of an attribute value that could remain constant over the lifetime of an object is the color attribute of a coffee cup object. You may decide that, although different coffee cups can have different colors, each individual coffee cup has a single color for its entire lifetime. Thus, the value of the color attribute would be established when a coffee cup object is created, and never changed after that. Another example of an attribute value that would likely remain constant for each individual object, but vary among different objects, is size. You may decide to serve three sizes of coffee product in your café, and have a separate size coffee cup for each: short (8 ounces), tall (12 ounces), and grande (16 ounces). The size of a coffee cup object would be established when the object is created. The size would then remain constant throughout the remainder of the cup's life. Although size is a constant attribute value for any one coffee cup object, it is not a constant for the type. Different coffee cup objects can have different sizes.

When you partition a problem domain into types, you will encounter choices between modeling difference between objects as a set of distinct types or as attributes of a common type. For example, instead of making color an attribute of the "coffee cup" type, you could have created one type for each color: "yellow coffee cup," "blue coffee cup," and "red coffee cup." These types wouldn't have a color attribute, because their color is inherent in their type. Likewise, instead of adding a size attribute to a coffee cup type, you could have defined three types: "short coffee cup," "tall coffee cup," and "grande coffee cup." These types wouldn't include a size attribute because their size is inherent in their type. So when you look at the problem domain, you have to decide which differences in characteristics and behavior that you will model as different types and which you will model as attributes of the same type.

The value of each attribute you decide upon, whether it fluctuates or remains constant during an object's lifetime, should in some way affect the behavior of the object. If the value of an attribute doesn't affect an object's behavior in any way, then there is no sense modeling the attribute as part of the type. The value of the color attribute, for example, could determine how a coffee cup object draws itself in the user interface of the café. The value of the size attribute could affect how a coffee cup object reacts to being filled with coffee. If an empty 16 ounce cup gets filled with 16 ounces of coffee, all is well. But if an empty 12 ounce cup gets filled with 16 ounces of coffee, 4 ounces of coffee have to go onto the table (or somewhere). Thus, the object's behavior differs depending upon the value of its attributes.

Defining Behavior

To model behavior, you must use yet another process of abstraction. You will not model all the possible behaviors a coffee cup can exhibit, only those that matter to your particular solution. A coffee cup can do many things. It can, for example, accept coffee, release one sip of coffee, spill, move from one part of the café to another, shatter into pieces, hold pencils and pens, or serve as a template for drawing nice circles with crayons. (Note that in each of these behaviors, the coffee cup object is interacting with other kinds of objects.) If you decide that accepting coffee, releasing coffee one sip at a time, spilling, and moving to another part of the café are the only behaviors that matter in your solution, your design should model only those behaviors.

A coffee cup's behavior is rooted in the ways it interacts with other objects. When a coffee cup accepts coffee, it is interacting with the coffee pot from which the coffee is poured. When it releases one sip of coffee, it is interacting with the guest who did the sipping. When it moves from one part of the café to another, it is interacting with the café. To model the coffee cup's behavior, you must decide upon a set of messages it will accept from other objects. In the case of a coffee cup, you may decide to accept four kinds of messages from other objects:

· a request to accept coffee (the amount of coffee to accept is passed as part of the message)

· a request to release one sip of coffee (the size of the sip is passed in as part of the message)

· a request to spill (release) all coffee contained inside the cup

· a request to move to a different part of the café

For each message, you need to decide what the object will do when it receives that message.

Encapsulation

A fundamental object-oriented concept is encapsulation, the bundling of data that represents the state of an object together with the code responsible for manipulating that data. In a Java program, the state of an object is represented by the value of its instance variables: data fields that represent the attributes of a type of object. You interact with a Java object (you send it messages) by invoking the object's instance methods: executable code that manipulates the object's instance variables.

To create an object in Java, you need a class. A class encapsulates the instance variables and methods that define an object. The act of creating an object is sometimes called instantiation, and objects themselves are sometimes called class instances. A class serves as a blueprint from which you can instantiate objects that contain the instance variables and methods defined by the class.

Defining Classes

As part of the software design of your virtual café, for example, you probably want a coffee cup class with which you can instantiate coffee cup objects. To do so you must declare a new class, using the class keyword, and give your new class a name:

// On CD-ROM in file encap/ex1/CoffeeCup.java

/**

* Models all coffee cups in the virtual cafe;.

*/

public class CoffeeCup {

 /**

 * The amount of coffee contained in the cup.

 * Units are in milliliters of coffee.

 */

 private int innerCoffee = 0; // a field

 /**

 * Adds coffee to the current inner amount.

 */

 public void addCoffee(int amount) {
// a method

 innerCoffee += amount;

 }

 /**

 * Releases one sip of coffee to the caller.

 * If current inner amount (innerCoffee) is less than a sip,

 * then returns entire remaining amount of coffee.

 * Always decrements innerCoffee by amount returned.

 */

 public int releaseOneSip(int sipSize) {

 int sip = sipSize;

 if (innerCoffee < sipSize) {

 sip = innerCoffee;

 }

 innerCoffee -= sip;

 return sip;

 }

 /**

 * Releases entire store of coffee to the caller.

 * Sets innerCoffee to zero.

 */

 public int spillEntireContents() {

 int all = innerCoffee;

 innerCoffee = 0;

 return all;

 }

}

In the above Java code, the class keyword indicates you want to define a new type of object, in this case a type named CoffeeCup. In between the curly braces of class CoffeeCup is one instance variable, innerCoffee, and three instance methods, addCoffee(), releaseOneSip(), and spillEntireContents().

Creating Objects

The CoffeeCup defines a new type for your program, from which you can instantiate objects. Once you create a CoffeeCup object, you will be able to add coffee to it via the addCoffee() method, remove coffee one sip at a time via the releaseOneSip() method, or remove coffee in one big deluge via the spillEntireContents() method. (You will be able to send it these three kinds of messages.)

To create a CoffeeCup object, you use the new operator, which returns a reference to a new object. A reference is a kind of pointer to an object, which you can use to invoke methods on the object. In other words, to send an object a message (by invoking a method on the object), you have to have a reference to that object. To keep track of references, you can declare variables in which you can store the references.

Here's an example in which a variable named cup is declared to be of type CoffeeCup and assigned a reference to a new CoffeeCup object created by the new operator:

CoffeeCup cup = new CoffeeCup();

Sending Messages to Objects

Once you have created a CoffeeCup object in a Java program, you will likely wish to send it a message. In Java, you send a message to an object by invoking a method on that object. Here is an example of a method interacting with a CoffeeCup object by sending it messages via its methods:

CoffeeCup cup = new CoffeeCup();

cup.addCoffee(150); // 150 ml of coffee

cup.releaseOneSip(20); // 20 ml sip

cup.spillEntireContents();

Here you sent an "add 150 ml of coffee" message to a CoffeeCup object. Then you sent a "release one sip" message, indicating that the size of the sip is 20 ml, to the same CoffeeCup object. Lastly, you sent a "spill entire contents" message to the CoffeeCup.

Separation of Interface and Implementation

One of the key ideas in object-oriented programming is the separation of an object's external interface from its internal implementation. An object's interface is the messages it will accept from other objects. An object's implementation is its attributes and its behavior in response to received messages. In the object-oriented world, an object exposes its interface to other objects, but keeps its implementation private. Thus, the implementation is separate from the interface. From the outside, the only way to interact with an object is by sending it a message by way of its interface.

Keeping interface separate from implementation enables objects to have responsibility for managing their own state. Other objects cannot directly manipulate an object's internal state, but must send the object a message. The object receives the message and decides what to do. It can, at its option, disregard the message. An object does not control when it will be sent messages, but it maintains control of its response to any messages it receives, including whether or not to change state.

A fundamental tenet of object-oriented programming is that every object of a particular class can receive the same messages. This tenet, which holds true in Java programs, also means that the external interface of an object depends only upon its class. If an object doesn't expose a CoffeeCup class's interface, for example, you can know for certain that the object is not an instance of class CoffeeCup.

One way to think of objects is that each object displays a set of message receptors to the world. To send an object a message, you must go through one of its receptors. In Figure 2-1, a CoffeeCup object is shown floating through space with three message receptors exposed to the universe. Each receptor forms a landing place for a message sent from another object. There is one receptor for each kind of message that this object is prepared to accept from the outside world. One receptor, addCoffee(), allows an external object to request that this coffee cup accept some incoming coffee. Another receptor, releaseOneSip(), allows an external object to request that the cup relinquish one sip of its coffee contents. A third receptor, spillEntireContents(), allows an external object to request that this coffee cup release its entire store of coffee.

Access Levels

Java allows you to separate the interface and implementation of objects by providing you with access levels to attach to the instance variables and methods of a class. The access level of an instance variable or method determines what other classes of object, if any, can access that instance variable or method.

The keywords public and private are access specifiers. If an instance variable or method is declared private, as is CoffeeCup's innerCoffee variable, only code defined in the same class can access it. If an instance variable or method is declared public, as are the methods of class CoffeeCup, code of other classes can access it. (Besides public and private, Java has two other access levels, package and protected, which will be discussed in Chapter 9.)

The customary way to design an object is to declare as public only those instance methods that other objects need to invoke. Instance variables are normally declared private, so that the object's instance methods will have sole responsibility for maintaining the object's state. Class CoffeeCup is an example of this kind of design. In such an object, the public instance methods are the objects only external interface.

Object Lifetimes

Objects have lifetimes. Some objects are short-lived. They are created, used for a short period of time, and then no longer needed. Other objects are used for longer periods of time, but eventually become unneeded as well. Other objects may remain in use from the time they are created until the application in which they live terminates.

Because objects use up memory resources, the memory occupied by unneeded objects may need to be reclaimed to make room for more objects, or to simply keep the memory image of the application small.

Java does not have any explicit way to "free" or "delete" an object once it is created. Instead, JVMs normally use a garbage collector to free memory occupied by objects. A garbage collector is a subsystem of the virtual machine that tracks the usage of objects and reclaims the memory occupied by objects that are no longer needed by the program. To indicate to the garbage collector that you no longer need an object, you simply drop all references to that object. Once an object is no longer referenced by the program, that object can't affect the program's future course of computation, and it is therefore available for garbage collection. At any point in the future, the garbage collector may reclaim the memory occupied by that object.

Creating a Java Application

Now that you've been exposed to the intellectually stimulating object-oriented meanings of the terms abstraction and encapsulation, it is time to come back down to Earth and create your first Java application. This section will cover various topics that you need to understand to create that first Java application. The application itself, named EchoServer, is given at the end of this section.

Comments

Java has three kinds of comments:

1. a single //,

2. a matching pair of /* and */, and

3. a matching pair of /** and */.

// indicates the rest of the line is a comment. /* and */ indicate that all characters between the initial /* and the terminating */ should be ignored by the compiler. /** and */ also comment out anything between them; however, the comments between /** and */ are picked up a special documentation tool called javadoc.

The javadoc tool parses Java source files and builds HTML files that document the source code. Comments starting with /** are called "documentation comments," or simply "doc comments," because javadoc includes these comments in the HTML files it generates.

More information on javadoc and doc comments is given in Appendix A.

Primitive Types

Java programs can contain three kinds of variables: instance variables, class variables, and local variables. (Class and local variables will be described in later in this chapter.) Each variable in a Java program has a type, which precedes the variable name when the variable is declared in the source file.

In Java, variables have either a primitive type or a reference type. Primitive types are built-in types, such as int or float, that are not objects. The primitive types offered by the Java programming language are shown in Table 2-1. Note that unlike C++, the primitive types in Java have defined ranges. Variables that have a reference type may hold a reference (similar to a pointer in C++) to an object. This kind of variable will be discussed in the next section.

	Type
	Range

	boolean
	either true or false

	byte
	8-bit signed two's complement integer (-27 to 27 - 1, inclusive)

	short
	16-bit signed two's complement integer (-215 to 215 - 1, inclusive)

	int
	32-bit signed two's complement integer (-231 to 231 - 1, inclusive)

	long
	64-bit signed two's complement integer (-263 to 263 - 1, inclusive)

	char
	16-bit unsigned Unicode character (0 to 216 - 1, inclusive)

	float
	32-bit IEEE 754 single-precision float

	double
	64-bit IEEE 754 double-precision float

Table 2-1. The primitive types of the Java programming language

Reference Types

When you define a Java class, you not only create a new blueprint from which you can instantiate objects, you also create a new reference type with which you can declare variables. Although the primitive types are built into the Java language and virtual machine, reference types are defined by Java code.

Each class you write defines a new type. For example, once you define class CoffeeCup, CoffeeCup becomes a new type you can use in your program. You can then declare a variable of type CoffeeCup, and that variable can hold a reference to a CoffeeCup object. Variables declared to have reference types are called object variables, because they hold references to objects.

More than one object variable can hold a reference to the same object. Here is an example of a CoffeeCup object reference being shared by two variables:

CoffeeCup cup = new CoffeeCup();

CoffeeCup sameCup = cup;

The type of an object variable determines the class of object to which it can hold a reference. For example, an object variable of type CoffeeCup can hold references to objects of class CoffeeCup, but wouldn't necessarily be able to hold references to objects of class Girraffe. (Through polymorphism, which will be described in Chapter 7, an object variable of type CoffeeCup can hold a reference to objects of other classes, so long as those classes are subclasses of CoffeeCup).

[bv: somewhere note that just declaring a variable gets you only a reference, but no object. You need to use new to get an object.]

Arrays

Strings

Class Variables and Class Methods

In addition to instance variables and methods, classes can have class variables and class methods, which are denoted by the static keyword. Class variables exist for the lifetime of a class and can be accessed even if there is no instance of the class. A class variable can be used to share a value among many instances of the class at the same time, or it can be used to store information between subsequent instances spread out over time. Class methods, which can be called in the absence of an instance of the class, can manipulate class variables defined in the class. Often, however, class methods serve as general purpose utility methods, methods that operate only on the data explicitly passed to them as parameters. A class's instance and class variables are also called its fields. A class's fields and methods are its members.

Named Constants

Class variables that are declared final (with the final keyword) are named constants. A named constant has a value that doesn't change over its lifetime. It must be initialized to its constant value with a literal constant, such as 355, 1.0, or "I'm a string literal.". For example, if you wanted to have convenient constants for the maximum amount of milliliters of coffee in each of your cup sizes, you could declare three named constants:

// On CD-ROM in file encap/ex2/CoffeeCup.java

class CoffeeCup {

 public static final int MAX_SHORT_ML = 237;

 public static final int MAX_TALL_ML = 355;

 public static final int MAX_GRANDE_ML = 473;

 // ...

}

Methods and Local Variables

Methods may have a return type, which can be any of the primitive types or an object type. Those that don't return anything must be declared to return void. Methods accept a set of zero or more parameters, each of which can have either a primitive or object type. To pass an object to a method, you pass a reference to it. Although primitive types are passed by value, objects are always passed by reference. [bv: actually, object references are passed by value. Objects are never passed. Be precise.] Unlike C++, which allows you to define a global function, there is no way in Java to have a method that isn't part of a class.

In addition to being assigned a reference to an object of the appropriate type, object references can also be set to null. You may want to do this to release an object for garbage collection. In Java, there is no equivalent to the delete operator of C++. You can't explicitly free memory. All objects instantiated by new are placed on the garbage-collected heap of the Java Virtual Machine. The garbage collector will from time to time reclaim the memory occupied by objects that are no longer referenced by the program. So long as there is at least one variable that holds a reference to an object, the garbage collector will leave that object on the heap. Here's an example of an object becoming available for garbage collection:

//On CD-ROM in file encap/ex1/Example1c.java

class Example1c {

 public static void main(String[] args) {

 // Create a new coffee cup object, assign it to ref1

 CoffeeCup ref1 = new CoffeeCup();

 // Assign reference to same CoffeeCup to ref2

 CoffeeCup ref2 = ref1;

 // Null out ref1

 ref1 = null;

 // Create a new object for ref2

 ref2 = new CoffeeCup();

 // The original CoffeeCup object is no longer referenced, so

 // it is now available for garbage collection.

 // Assume this program continues and does other work.

 //...

 }

}

Method Overloading

In Java, you send a message to an object by invoking one of the object's methods. Every method of a particular class has a signature unique to that class. A method's signature consists of its name and the number and types of its parameters. (Note that a method signature does not include the method's return type.) The signature and return type of each public instance method in a class form part (or all) of the interface of instances of that class. They define the kinds of messages instances of that class will accept.

Every method in a class must have a unique signature, but not necessarily a unique name. You can put multiple methods of the same name into the same class, so long as each method differs in either the number, the types, or the order of their parameters. This is called method overloading. If you try to put two methods with the same signature, but different return types, into the same class, that class won't compile. In Java, you can't overload methods just by returning a different type. For example, you could have these three separate methods for adding coffee:

// On CD-ROM in file fieldmethod/ex14/CoffeeCup.java

class CoffeeCup {

 public void add(int amount) {

 System.out.println("Adding int amount " + amount);

 //...

 }

 public void add(float amount) {

 System.out.println("Adding float amount " + amount);

 //...

 }

 // Pour coffee into this cup from another cup.

 public void add(CoffeeCup cup) {

 System.out.println("Pouring from another cup.");

 //...

 }

 //...

}

The compiler determines which add() method you are invoking by the type of the parameter you pass:

// On CD-ROM in file fieldmethod/ex14/Example14.java

class Example14 {

 public static void main(String[] args) {

 CoffeeCup blueCup = new CoffeeCup();

 CoffeeCup redCup = new CoffeeCup();

 blueCup.add(50); // Use void add(int amount)

 blueCup.add(50.0f); // Use void add(float amount)

 redCup.add(blueCup); // Use void add(CoffeeCup cup)

 }

}

You can't overload methods by varying only the return type, because the compiler wouldn't know which method you wanted if you invoke it and ignore the return value. For example, were you able to define two add() methods like this:

// On CD-ROM in file fieldmethod/ex15/CoffeeCup.java

// THESE TWO METHODS WON'T COMPILE TOGETHER, BUT IMAGINE

// FOR A MOMENT THAT IT WERE POSSIBLE.

class CoffeeCup {

 public void add(int amount) {

 //...

 }

 public boolean add(int amount) {

 //...

 }

 //...

}

And somewhere else in your program you invoked an add() method but ignored the return type:

// On CD-ROM in file fieldmethod/ex15/Example15.java

// THIS WON'T COMPILE EITHER, BECAUSE THE CoffeeCup CLASS IT

// DEPENDS ON DOESN'T COMPILE.

class Example15 {

 public static void main(String[] args) {

 CoffeeCup cup = new CoffeeCup();

 cup.add(50);

 }

}

The compiler wouldn't know which add(int amount) you were referring to, the one that returns an int or the one that doesn't return anything. This is why a method's signature is composed of the method's name and the number and types of its arguments, but not its return type. Every method in a class, whether explicitly declared in the class or inherited by it, must have a unique signature.

Packages and Importing

The main() Method

The EchoServer Application

// On CD-ROM in file encap/ex?/Echo.java

public class EchoServer {

 public void run() {

 while ((int c = System.in.read()) != -1) {

 System.out.write(c);

 }

 }

 public static void main(String[] args) {

 Echo echo = new Echo();

 echo.run();

 }

}

Compiling and Running EchoServer
Note that unlike C++, Java makes no distinction between a "declaration" and a "definition." In Java, all items--classes, fields, and methods--are declared in one place only, in a .java file. There are no separate header files and implementation files, as in C++. Also, other classes in other .java files can use CoffeeCup directly, without needing to declare it as a class at the top of the file, as C++ requires. The Java compiler automatically attempts to find any class, field, or method that is used in a .java file by looking in other .java files or in libraries of class files. The compiler also looks ahead in the same source file, so to see if the referenced item occurs later in the file. If the Java compiler is unable to find some class, field, or method referred to by a .java file, that .java file fails compilation with an error message indicating the missing item.

The Java compiler takes your source files and, as is the habit of compilers, checks them for correctness. When the compiler is pleased with your work, it translates the source files into class files--the binary format for Java programs. (In Java, source files take the extension ".java"; class files take the extension ".class".) The compiler transforms the Java language instructions expressed in your source files to a form called bytecodes, instructions for the Java Virtual Machine, which the compiler places into the class files. You get one class file for each class and one stream of bytecodes for each method in your program's source. The EchoServer program compiles to only one class file, named "EchoServer.class".

Once your program is in class file form, it is ready to run. A Java Virtual Machine runs a program by loading its class files and executing the bytecodes they contain. To run the EchoServer program, for example, a Java Virtual Machine would first load Greeting.class and then execute the bytecodes of the main() method it contains. The virtual machine would also load class files from the Java API, to execute any of their bytecodes that are needed by the EchoServer program.

Design Corner

UML Diagram of Class CoffeeCup
Java's Object Model

The object model described here is that which exists inside a single virtual machine instance. Somewhere, perhaps in chapter 1?, say that the object model is different across VMs.

Recommended Naming Conventions

Java allows you to name classes, fields, and methods any way you want, however, Java does offer some suggested naming conventions. To classes you should give names that are nouns or noun phrases. They should be descriptive and not overly long. Class names are mixed case: the first character of each word in the name is upper case; the rest are lower case. Hence, the "coffee cup" type of object in the problem domain becomes the CoffeeCup type in the solution. Using noun names for classes makes sense because classes represent the "things" in your problem domain--and in human language, the names for things are nouns. If you have a class with a verb name, such as FillCupWithCoffee, it is likely a sign of a poorly designed class. Filling a cup with coffee is an activity, not a object. Therefore, this activity should probably be modeled as a method of some class, not as a class itself.

You should give fields names that are nouns, noun phrases, or abbreviations for nouns. Field names are mixed case. The first character of a field name should be lower case. Each subsequent word in the field name, however, should begin with an upper case character. (One exception to this naming convention for fields is constant fields, which should be all upper case. This is discussed later in this chapter.) The attribute modeled in the CoffeeCup class is the amount of coffee contained inside the cup. So a potential field name for this attribute would be amountOfCoffeeContainedInsideTheCup. This long name was abbreviated to innerCoffee. Using noun names for fields makes sense, because fields model attributes of objects in the problem domain, and attributes are generally described with nouns.

The constants above illustrate the suggested naming convention for compile-time constants: all capital letters with each word separated by an underscore. The name can be any part of speech. Although attributes are modeled by fields, not all fields are necessarily attributes.

You should give methods names that are verbs or verb phrases. Their capitalization follows that of fields: the first character is lower case and the first character of each subsequent word is upper case. The names of the methods in the example above follow the suggested Java naming convention for methods: addCoffee(), releaseOneSip(), and spillEntireContents().Giving methods verb names is sensible, because methods represent activities or actions in your problem domain, and in human language, action words are verbs.

Another way to make your Java code more readable is by following the recommended naming conventions proposed by the Java Language Specification. A few conventions for naming methods that were not described in Chapter 5 are:

· Use "get" and "set" as prefixes that assign and return the value of an attribute. For example, consider an object which keeps track of its current temperature. You would name a method that assigns a new value to the object's temperature attribute "setTemperature()", and name a method that returns the object's current temperature "getTemperature()". This is also the convention used by JavaBeans for getting and setting bean properties.

· A method that returns the length of an object should be named "length()".

· The name of a method that tests a boolean condition should start with the prefix "is". For example, to test whether an object is too hot, too cold, or just right, you would expect to call isTooHot(), isTooCold(), or isJustRight().

· The name of a method that returns a representation of its object converted to a particular format should start with the prefix "to". An example of this convention is the toString() method, which every class inherits from class Object. This method returns a string that is a textual representation of the object.

Class names should be nouns. Methods names should be verbs.

As with other types of variables, the Java Language Specification provides suggested naming conventions for local variables. In general, you should give local variables names that are lower case, short, and meaningful. Local variable names are often not whole words, but are instead acronyms, abbreviations, or mnemonics. You may wish to give single- character names to looping or temporary local variables. The suggested single-character names for variables of different types are:

byte b;

char c;

double d;

Exception e; // For any exception

float f;

int i, j, k;

long l;

Object o; // For any object

String s;

// And v, for an arbitrary value of any type

If you do use local variable names that include words, in an effor to maximize the readability of your code, begin with a lower case character and start each subsequent word with an upper case character, as in thisIsALongButDescriptiveNameForALocalVariable. [bv: Also, say long for rarely used names; short for oft used names.]

You can use method overloading to make your code more readable. If methods are really doing the same thing, but on different types of data, you should give those methods the same name.

Objects as Bundles of Services

Make Members as Private as Possible

In a Java class, the implementation is any hidden internal data of a class, any hidden methods of the class, and the code of the methods exposed as the interface of the class. The primary step you must take to separate the interface and implementation is to hide the internal data of the class. To hide a field, you declare it private.

The four access levels are private, public, protected, and package. As a designer of a class, you generally hide internal data by declaring it private. Any methods that are invoked only by other methods of the class can be declared private also. Members declared private can only be accessed by code belonging to the same class. If you are creating a library, you'll want to declare any methods you want to expose to the world public. Public members of public classes can be accessed by any method of any class.[bv: so long as the class itself is declared public] [bv: need a short advice on using protected and package? Need to describe public classes.]

[bv: mention classes can be public or package. Package access classes will be described in Chapter 5. All classes up to that point will be public. (Need to make them all public.)]

If another object is allowed access to a member, that member is part of the object's external interface and represents one way the object can receive a message. A class's members include all the variables and methods declared in the class. (As you will see in Chapters 5 and 9, a class can also include as members other classes, which are called nested or inner classes.)

Separation of interface and implementation is not intended to keep objects out of trouble; rather, it is intended to keep programmers out of trouble. To understand why, it helps to classify programmers into two groups. When you design a class, you are the designer of that class. All the programmers who use your class in their programs are the clients of the class. The designer's goal is to build a useful library of types, whereas the client's goal is to hook together types from various libraries to build a program that solves a particular problem. In your career as a Java programmer you will undoubtedly play both roles. Sometimes you'll create new classes; sometimes you'll use libraries of classes created by others.

One of the main ideas of the object-oriented paradigm is that designers should keep hidden from clients the actual implementation of a class. The designer of a class writes and maintains the implementation, and exposes as the interface only what is needed by the client. Clients of the class have access only to the interface.

There are two main benefits of separating the interface and implementation of a class. First, this approach makes it easier for designers to make changes to their classes. A designer can change the underlying implementation of a class while maintaining the same external interface. This in turn enables clients to use the new version of the class without requiring any changes to existing client code (so long as the designer doesn't change the class's behavior). [bv: talk about contract here?]

A second benefit of this approach is that it allows a designer to keep control of the internal data of an object. If the internal data of an object is hidden, the only way a client can manipulate the internal data is by invoking the methods exposed as the interface. Because the designer writes all the methods of the class, the designer has exclusive control over how the internal data is manipulated.

One other reason to make data private is because you synchronize access to data by multiple threads through methods. This justification for keeping data private will be discussed in Chapter 13.

As a design guideline, you should always make non-constant fields private, unless you have an explicit reason not to. When you expose fields outside the class, you lose the ability to control changes to the value of that field as your program runs. You also have less flexibility in the future to change the implementation of the class.

Behind the Scenes

In the example above, all SugarHolder objects will share the same sugarPacketsInCafeCount, but each SugarHolder object will be awarded its own copy of sugarPacketsCount. In the Java Virtual Machine, instance variables are associated with objects. When a new object is created by a running program, the Java Virtual Machine allocates enough memory to hold all the object's instance variables. However, only one copy of each class variable is needed during the entire lifetime of the class, because class variables are shared among all instances of a class. Therefore, in the Java Virtual Machine, class variables are associated with the class itself, exist throughout the lifetime of the class, and must be created and initialized before a class is used.

The relationship between the language, class file, and virtual machine

Compile Time Resolution of Constants? Or is it too soon?

Quick Overview of the JVM's Internal Architecture

When the CoffeeCup object is create by new, two things happen. First, the Java Virtual Machine allocates space on the heap for the object. Once memory has been allocated for the object, the Java Virtual Machine invokes a constructor for the object to initialize the object's fields. The constructor invoked in the example above is the default constructor, which takes no parameters. In this case, because the class itself did not declare a constructor, the Java compiler generated a default one. (If you declare at least one constructor in a class, the compiler won't generate one for you.) The parentheses to the right of the class name is how you pass parameters to the constructor. In this case, because it is a default constructor, there are no parameters and the parentheses are empty. Constructors will be discussed in detail in Chapter 4.

Example Programs

Hello World

Here's an example of a simple Java program. This one prints out a friendly greeting:

// On CD-ROM in file encap/ex?/Greeting.java

public class Greeting {

 public static void main(String[] args) {

 System.out.println("Wake up and smell the coffee!");

 }

}

As the Java Virtual Machine executed the bytecodes of the Greeting program, you would see this friendly greeting at the standard output:

Wake up and smell the coffee!

Another Echo

[bv:show the no object way to do Echo and talk about prefering objects over classes.]

Objects and Java by Bill Venners
Chapter 3:
Expressions and Statements
Objects and Java | Contents | Previous | Next
Another difference between the source files of C++ and the source files of Java is that Java source is written in Unicode, a 16-bit international character set standard. If you create an ASCII source file, the Java compiler will treat the ASCII characters as if they were the equivalent Unicode characters. This will be discussed at greater length in Chapter 3.

This chapter will reveal to you the details of expressions and statements in the Java language. It discusses operators, expressions, literals, local variables, control-flow, and gives some general guidelines on various aspects of method implementation.

Expressions

Expressions perform operations on data and move data around. Some expressions will be evaluated for their results, some for their side effects, some for both. An expression can have three kinds of result:

1. a value, such as the result of: (4 * i)

2. a variable, such as the result of: i = 4

3. nothing (in the case of an invocation of a method declared as void)

An expression that results in a variable is called an lvalue in C++ and many other languages. A variable expression in Java is the same thing, the Java Language Specification just uses the name variable instead of lvalue. Such an expression can be used on the left hand side of an assignment operator. Side effects come about when an expression includes an assignment, increment, decrement, or method invocation.

Literals

Each type in the Java programming language has literals, the way to specify unnamed constant values for the type. For example, the boolean type has two literals, true and false. Object reference types have only one literal, null.

Integer literals come in three forms: decimal, hexadecimal, and octal. The way an integer literal begins indicates the base of the number. If the number begins with a 0x or 0X, it is hexadecimal (base 16). Some examples are: 0x5, 0X00FF, and 0xcafebabe. If the number begins with only a zero, it is an octal (base 8). Some examples are: 035, 0777, 0321. If the number begins with a non-zero digit, it is decimal: 31, 255, 20. If an integer literal ends in an L or l, it is a long, otherwise it is an int. Some examples of long integer literals are: 0XCAFEBABEL, 035L, 31L. If an int literal is assigned to a variable of type short or byte, the literal is treated as if it were a short or byte type so long as the literal value is within the valid range for that type.

Floating point literals are made up of decimal digits, optionally containing a decimal point, and optionally followed by an E or e and an exponent. Some examples of floating point literals are: 3.14159, .314159e1, 34.26E23. If a floating point literal ends in a F or f, it is a float, otherwise it is a double. Optionally, a double floating point literal can end in D or d. Some examples of float literals are: 3.14159F and 3e5f. The same values expressed as doubles could look like this: 3.14159 and 3e5D.

Character literals can be any Unicode character between single quotes, such as 'A'. In addition to providing an explicit character between the single quotes, you can provide an octal or hex number preceded by a backslash. The octal number must be between '\0' and '\377'. The hex number must have four digits. It is preceded with either a \u or \uu, as in: '\u0073' and '\uu039d'. There are also several character literals represented by special escape sequences, shown in Table 3-1.

Table 3-1. Special Character Literal Escape Sequences

	Literal
	Meaning

	\n
	line feed (\u000A)

	\b
	backspace (\u0008)

	\t
	tab (\u0009)

	\f
	form feed (\u000C)

	\r
	carriage return (\u000D)

	\"
	double quote (\u0022)

	\'
	single quote (\u0027)

	\\
	backslash (\005C)

The hex version of the character literal can have either one or two u's to facilitate conversion of Unicode source files to ASCII and back again. All Java source files are Unicode by definition. When you create an Java source file in ASCII, it is treated as the first 128 Unicode characters. (The first 128 Unicode characters, \u0000 to \u007f, map to the 7-bit ASCII character set. The second 128 Unicode characters, \u0080 to \u00ff, map to the ISO-Latin-1 character set.) If you include in a Unicode source file the Greek character 'q' (lower case theta), it will be converted into the string '\u03b8' in the ASCII file. When the ASCII file is converted back to Unicode, the '\u03b8' will be changed back into a 'q'. If, however, in your Unicode file you included the character literal '\u03b8', this would be converted into '\uu03b8' in the ASCII file. If the extra u were not added, when the ASCII file was translated back to Unicode you'd end up with a 'q' where you used to have a '\u03b8'. To avoid this problem, '\uu03b8' is transformed into '\u03b8' when converting from ASCII back to Unicode.

The Unicode escape sequences are valid not only for character and string literals, they are valid anywhere in a Java source file. For example, instead of typing this into your Unicode source file:

// (Not on the CD-ROM)

class Example1a {

 public static void main(String[] args) {

 int q = 25;

 System.out.println(q);

 }

}

You could type this into a Unicode or an ASCII source file:

// In Source Packet in file expr/ex1/Example1b.java

class Example1b {

 public static void main(String[] args) {

 int \u03b8 = 25;

 System.out.println(\u03b8);

 }

}

If you wanted to be extremely cryptic, you could even type:

// In Source Packet in file expr/ex1/Example1c.java

class Example1c {

 public static void main(String[] args) {

 \u0069\u006e\u0074\u0020\u03b8\u0020\u003d

 \u0020\u0032\u0035\u003b

 System.out.println(\u03b8);

 }

}

The main() method of Example1c starts with the same statement as the previous two examples, but with every character--including spaces and the semicolon-- replaced by the equivalent Unicode escape sequence. All three versions compile and do the same thing when run: they declare an int named q, initialize it to 25, and print out its value.

String literals, which appear between double quotes, as in "appear", are actually references to instances of class String. Strings will be described in detail in Chapter 10.

Operators

Java's binary arithmetic operators--addition: +, subtraction: -, multiplication: *, division: /, and remainder: %-- operate on any numerical type. The % operator, which is called modulo in C++, is called remainder in Java. It performs the same operation: calculating the remainder of a division. You can also use the + operator to concatenate strings. String concatenation will be described in Chapter 10. [bv: may want to add more details of IEEE754 math]

Java also has unary + and -, which allow you to indicate a literal number is positive or negative, as in -3 or +4.0. If you don't specify a unary + or -, a literal number is interpreted as positive. The unary - can also be used to negate a variable, as in: negativeVal = - val.

Java also has increment: ++, and decrement: --, operators. These operators can be placed before or after the variable expression they modify. If they are placed before (a prefix operator), they modify the variable expression before its value is used. If they are placed after (a postfix operator), they modify the variable expression after its value is used.

Java's relational and equality operators are: greater than: <, less than: >, greater than or equal to: >=, less than or equal to: <=, equal to: ==, and not equal to: !=. All yield a boolean result. The unary ! operator inverts boolean value.

The conditional operators, conditional-AND: &&, and conditional-OR: ||, take boolean operands and yield a boolean result. Expressions built from these operators only evaluate as far as needed to determine the result. For example, assume salt(), pepper(), toBe(), and notToBe() are methods that return a boolean. If salt() evaluates to false in the expression:(salt() && pepper()), then pepper() is never evaluated. Likewise, if toBe() evaluates to true in the expression:(toBe() || notToBe()), then notToBe() is never evaluated. Conditional- AND and conditional-OR are also called logical-AND and logical-OR.

Java has several operators that perform operations on individual bits. The binary bitwise operators are: bitwise AND: &, bitwise inclusive OR: |, and bitwise exclusive OR (or bitwise XOR): ^. The unary bitwise complement operator, ~, inverts each bit in its operand. There are also three shift operators: shift left: <<, shift right: >>, and unsigned shift right: >>>. The shift operators shift the integer value on the left of the operator by the amount specified by the integer value on the right. Shift left and unsigned shift right fill with zeroes as they shift. Shift right fills with the highest bit (the sign bit) of the left hand value as it shifts.

The conditional operator, ? :, is a shorthand for an if-then- else construction that does one of two different things depending upon the result of a boolean expression. The expression:

variable = booleanExpr ? value1 : value2;

has the same effect as:

if (booleanExpr) {

variable = value1;

}

else {

variable = value2;

}

The conditional operator is also sometimes called the ternary operator or the question- colon operator.

In addition to the basic assignment operator, =, Java includes many shorthand assignment operators that allow you to write expressions such as j = j + 1 in shorthand as j += 1. The main difference between these two approaches is that in the shorthand version, the variable expression j is evaluated only once. In the longhand version, the variable expression j is evaluated twice. This difference matters in cases where the variable expression has a side effect, as in someArray[i++]. All the shorthand assignment operators are listed in Table 3-2. [bv: must add in about one guy needing to be assignable to the other and that being the type of the expression.]

Operator Precedence and Associativity

Operator precedence determines which parts of an expression are evaluated before the other parts. For example, the expression

2 + 2 * 7

evaluates to 16, not 28, because the * operator has a higher precedence than the + operator. Thus the 2 * 7 part of the expression is evaluated before the 2 + 2 part. If you wish, you can use parentheses in expressions to clarify evaluation order or to override precedence. For example, if you really wanted the result of the expression above to be 28, you could write the expression like this:

(2 + 2) * 7

Table 3-2 shows all Java's operators and their precedence. The postfix operators, shown at the top of the table, have the highest precedence. The assignment operators, shown at the bottom, have the lowest precedence.

Table 3-2. Operator precedence

	Operator Type
	Operator

	
	

	Postfix operators
	[] . (params) expr++ expr--

	
	

	Unary operators
	++expr --expr +expr -expr ~ !

	
	

	Creation or cast
	new (type)expr

	
	

	Multiplicative
	* / %

	
	

	Additive
	+ -

	
	

	Shift
	<< >> >>>

	
	

	Relational
	< > >= <= instanceof

	
	

	Equality
	== !=

	
	

	Bitwise AND
	&

	
	

	Bitwise exlusive OR
	^

	
	

	Bitwise inclusive OR
	|

	
	

	Conditional-AND
	&&

	
	

	Conditional-OR
	||

	
	

	Conditional
	?:

	
	

	Assignment
	= += -= *= /= %= >>= <<= >>>= &= ^= |=

	
	

When multiple operators of the same precedence appear side by side in an expression, the associativity of the operators determines the order of evaluation. In Java, all binary operators except the assignment operators are left-associative. Assignment operators are right- associative. For example, i + j - k is evaluated as (i + j) - k. i = j = k is evaluated as i = (j = k).

Complex Expressions

Operator precedence is part of the Java language. You needn't be afraid to use it. But on the other hand, if you find yourself attempting to show off your knowledge of precedence, consider using parentheses to clarify what operators are operating upon what expressions. When you do rely on precedence, make sure you are as smart as you think you are. Many bugs arise from mistaken assumptions about precedence. The best is approach is somewhere in the middle. If you use too many parentheses, or not enough, the code can be difficult to understand. You should choose the form that you feel maximizes your code's readability. Remember, it's not a contest to see who can write the most cryptic code, but who can write the most lucid code.

One approach to writing complex expressions is to separate them out into several stages, placing intermediate values into variables with descriptive names. Using well-named variables to hold intermediate values of long computation expressions can help others understand what is going on. As a bonus, a programmer can check the value of intermediate results in a debugger by inspecting the intermediate variables.

Order of Evaluation

After taking into account precedence and parentheses, Java guarantees that expressions will be evaluated left to right. For example, to evaluate eat() + drink() - beMerry(), Java will first evaluate eat(), then drink(), then perform the addition, then evaluate beMerry(), and finally perform the subtraction. eat() is evaluated before drink(), because eat() is to the left of drink(), and expressions are evaluated left to right. This guarantee is important because the invocations of eat() and drink() may have side effects that would differ if they were invoked in the opposite order.

In general, every operand to an operator is evaluated before the operator is evaluated. Three exceptions are the conditional-AND: &&, the conditional-OR: ||, and the conditional operator: ?:. The right hand side of conditional-AND and conditional-OR expressions won't be evaluated if the left hand side determines the result. For example, if the left hand side of a conditional-AND expression evaluates to false, the result of the expression will definitely be false, so the right hand side is not evaluated. Likewise, if the left hand side of an conditional-OR expression evaluates to true, the result of the expression will definitely be true, so the right hand side is not evaluated.

In the case of a conditional expression, the boolean-expression is evaluated first. Depending upon the result of this evaluation, only one of the other expressions will be evaluated. For example, in the expression isHungry() ? eat() : beMerry(), isHungry() will be evaluated first. If it evaluates to true, eat() will be evaluated and beMerry() will not. Otherwise, beMerry() will be evaluated and eat() will not.

Statements

A Java method body is a series of zero or more statements. In the Java programming language, statements are the fundamental unit of execution. All statements except blocks are terminated by a semicolon. Blocks are denoted by open and close curly braces. Statements are executed for their effects; they do not have values. There are many different kinds of statements in Java:

· blocks

· local variable declaration statements

· the empty statement

· expression statements

· the if and if-else statements

· the while statement

· the do-while statement

· the for statement

· the break statement

· the continue statement

· the return statement

· the switch statement

· the throw statement

· the try statement

· the synchronized statement

Most of these statement types will be described below. A few will be described in later chapters.[bv: am I missing anything that was added in JDK 1.1 or 1.2?]

Blocks

A block is a series of zero or more statements between a matching set of open and close curly braces. The bodies of methods and switch statements are blocks. The bodies of if, for, while, and do-while statements may also be blocks. Also, you can also simply create a new block inside another block by enclosing code within curly braces. A block contained within another block is itself a statement of the outer block. Blocks that contain no statements are called empty.

Local Variable Declaration Statements

[bv: need to add final here.]

Declaration statements establish a name, type, and possibly an initial value for a new local variable. Local variables in Java can be declared anywhere in a method. A local variable need not be initialized where it is declared, but it must be initialized before it is used. If it isn't, the source file won't compile. For example, the following snippet of code won't compile:

// In Source Packet in file expr/ex2/Example2a.java

class Example2a {

 public static void main(String[] args) {

 // THIS WON'T COMPILE.

 int i;

 if (i < 100) {

 //...

 }

 }

}

This code won't compile because i is used before it is initialized. To fix this problem, you could initialize i when you declare it:

// In Source Packet in file expr/ex2/Example2b.java

class Example2b {

 public static void main(String[] args) {

 // This compiles fine.

 int i = 5;

 if (i < 100) {

 //...

 }

 }

}

Alternatively, you could assign a value to i after you declare it, but before you use it:

// In Source Packet in file expr/ex2/Example2c.java

class Example2c {

 public static void main(String[] args) {

 // This compiles fine.

 int i;

 i = 5;

 if (i < 100) {

 //...

 }

 }

}

The "i" in "int i" and the "i = 5" in "int i = 5" are called declarators. As in C++, you can place multiple local variable declarators, separated by commas, into the same local variable declaration statement, as in:

int i, j = 5, k;

The scope of a local variable extends from the point where the local variable is declared to the end of the block in which it is declared. No other local variable of the same name can be declared within a local variable's scope. For example, the following won't compile, because a second local variable i is declared within the scope of a first local variable i:

// In Source Packet in file expr/ex2/Example2d.java

class Example2d {

 public static void main(String[] args) {

 // THIS WON'T COMPILE.

 int i = 4;

 if (i < 10) {

 int i = 3; // Can't use name i again.

 //...

 }

 }

}

The Empty Statement

;

[note to editors: the above semicolon is intended to be the entire text of this section. If I were to explain the semicolon in a sentence, it would be: "The empty statement, represented by a semicolon and nothing else, does nothing." The lone semicolon above is an empty (English) statement about the empty (Java) statement. All the programmers who reviewed this chapter "got it."]

Expression Statements

Expression statements are valid Java expressions that are terminated by a semicolon. Unlike C and C++, not all kinds of valid expressions can be expression statements. In Java, there are four kinds of expression statements:

· assignment expressions, such as a += 5, b *= 7, or c = 3

· prefix and postfix increment and decrement, such as ++a, --b, c++, d--

· method invocations, whether or not they return a value

· object creation expressions, such as new CoffeeCup

All expressions except invocations of methods that don't return a value (methods declared as void) yield a value upon evaluation. When an expression is used as an expression statement, the end value of the expression is discarded. Such expressions are evaluated simply for their side effects, as in:

++i;

The full details of expressions will be expressed later in this chapter.

The if and if-else Statements

The simplest control flow construct in Java is the if statement, which can have an optional else clause. Here is the format without the else clause:

if (boolean-expression)

statement
The statement can be a simple statement terminated by a semicolon or a block enclosed in curly braces. Alternatively, you can add an else:

if (boolean-expression)

statement1
else

statement2
As in C++, an else in Java matches the closest if.

Note that Java's if statement differs from that of C++ in that the expression contained in the parentheses must be boolean. In Java, if i is an int, then if (i) won't compile. You must say if (i != 0). This is also true of the expressions in the while, do, and for loops. This feature of Java enables the compiler to catch accidental use of = instead of == inside an expression. For example, if you accidentally type i = 3 instead of i == 3 in an if expression, it won't compile:

// In Source Packet in file expr/ex2/Example2e.java

class Example2e {

 public static void main(String[] args) {

 int i = 4;

 // In Java, THIS WON'T COMPILE, because the resulting

 // value of the expression isn't boolean.

 if (i = 3) {

 //...

 }

 }

}

The while and do-while Statements

The while statement looks like this:

while (boolean-expression)

statement
Java's while loop behaves like C++'s while loop (the difference between the two is that Java's expression must be boolean.) The boolean- expression is evaluated first. If the expression is true, statement is executed. This process is repeated until the expression evaluates to false (or a break, continue, or return is executed, or an exception is thrown).

The do-while statement differs from the while in that the statement is always executed at least once. In a while loop, if the boolean-expression evaluates to false the first time, statement is never executed. Here is what a do-while looks like:

do

statement
while (boolean-expression);

The for Statement

The for loop is used to iterate through a sequence of values. It takes the same form as in C++:

for (init-expr; boolean-expr; incr-expr)

statement
The init-expr is an initialization expression, such as i = 0. You can optionally initialize multiple variables in init- expr by separating each initialization expression by a comma, as in i = 0, j = 0. You can even declare a new variable in the init- expr:

for (int i = 0; i < 10; ++i) {

 //...

}

The scope of this variable i is only within the statement portion of the for itself (in this example, a block). This contrasts with C++, which also allows you to declare a variable in the init-expr portion of a for loop, but that variable has a scope as if it were declared just above the for loop. In Java, the variable has a scope as if it were declared inside the statement of the for loop.

The incr-expr is usually an increment expression such as ++i. Like the init-expr, it can contain multiple statements separated by commas, as in: ++i, ++j.

The for loop executes by first executing init- expr, then evaluating boolean-expr. If boolean-expr evaluates to true, statement is executed. After statement is executed, incr-expr is executed and boolean-expr is checked again. The process of boolean-expr check, statement execution, incr-expr execution repeats until boolean-expr evaluates to false (or a break, continue, or return is executed, or an exception is thrown).

Each of the three components in a for loop's parentheses are optional. If you leave out the boolean-expr, it is assumed to be true. Thus, the customary way to write an infinite loop is:

// a "forever" loop

for (;;) {

 //...

}

The switch Statement

The switch statement gives an alternative to a cascade of if- else constructs:

// In Source Packet in file expr/ex3/Example3a.java

class Example3a {

 public static void main(String[] args) {

 int i = (int) (Math.random() * 5.0);

 if (i == 0) {

 System.out.println("Zero");

 }

 else if (i == 1) {

 System.out.println("One");

 }

 else if (i == 2 || i == 3) {

 System.out.println("Two or Three");

 }

 else {

 System.out.println("Other");

 }

 }

}

The equivalent switch statement is:

// In Source Packet in file expr/ex3/Example3b.java

class Example3b {

 public static void main(String[] args) {

 int i = (int) (Math.random() * 5.0);

 switch (i) {

 case 0:

 System.out.println("Zero");

 break;

 case 1:

 System.out.println("One");

 break;

 case 2:

 case 3:

 System.out.println("Two or Three");

 break;

 default:

 System.out.println("Other");

 break;

 }

 }

}

A switch's expression (i in this example) must be an int. The case labels must be compile-time constants. They can either be literals, as shown here, or static final fields of some class. A break statement is used in a switch to indicate the processing for that case is done. You need not have a break for every case. You can "fall through" to the code for the next case label, as was done by case 2 in this example.

The break and continue Statements

You can use break to exit while, do- while, for, and switch statements. When a break is executed, the execution continues just after the end of the current simple statement or block. [bv: actually, I think this statement is too simple. break hops to the end of the current while, do-while, or switch block, right?]

You can use continue inside a while, do- while, and for loop. When a continue is executed, the rest of the loop's body is skipped and the boolean-expression is again evaluated.

You can optionally use a label to indicate which loop or switch you want a break to operate on, or which loop you want a or continue to operate on. This enables you to easily break out of nested loops or switch statements, or to continue nested loops. To do so you must label the beginning of the loop or switch statement:

label: statement
Here's an example:

// In Source Packet in file expr/ex4/Example4.java

class Example4 {

 public static void main(String[] args) {

dance: for (int i = 0; i < 10; ++i) {

 System.out.println(i + ": Swing your partner...");

 for (int j = 0; j < 10; ++j) {

 System.out.println(j + ": Round and round...");

 if (i == 5 && j == 5) {

 break dance;

 }

 }

 }

 // Execution continues here after break dance is encountered.

 System.out.println("Now, twirl on your back.");

 }

}

When the break dance statement is executed, the for loop labeled dance (the outer loop) is exited.

The return Statement

The return statement returns from a method, potentially returning a value. If the method is declared as void, you must use a simple return statement:

return;

Otherwise, you must indicate a return value with a type that matches the return type of the method. For example, a method declared with a boolean return type could have the following statement:

return true;

Other Statements

A handful of other statements will be covered in later chapters. Chapter 11 will describe the throw and try statements. Chapter 13 will describe the synchronized statement.

Reachability

With one exception, statements in a Java program must be reachable. There must be at least one path of execution that will "reach" each statement. For example, the following code won't compile, because the ++i is unreachable:

// In Source Packet in file expr/ex5/Example5a.java

class Example5a {

 public static void main(String[] args) {

 // THIS WON'T COMPILE

 int i = 0;

 while (false) {

 ++i;

 }

 }

}

The exception to the reachability rule is the if statement. The following code does compile:

// In Source Packet in file expr/ex5/Example5b.java

class Example5b {

 public static void main(String[] args) {

 // This compiles fine.

 int i = 0;

 if (false) {

 ++i;

 }

 }

}

The reason the if statement is special is so it can be used for conditional compilation. (Because Java doesn't have a preprocessor like C++, it can't use C++'s method for conditional compilation.) The above code would compile, but the if (false) { ++i; } code would not appear in the class file.

Objects and Java by Bill Venners
Chapter 4:
Initialization and Cleanup
Objects and Java | Contents | Previous | Next
Variables have lifetimes. The lifetime of an instance variable matches that of the object to which it belongs. The lifetime of a class variable matches that of the class to which it belongs. The lifetime of a local variable is from the point it is created to the point where it goes out of scope. The Java language and virtual machine have mechanisms to ensure each of these kinds of variables are initialized before they are used.

As discussed in Chapter 3, the Java compiler and Java virtual machine make sure local variables are explicitly initialized before they are used.

[bv: talk briefly about the lifetime of a class here]

At the beginning of an object's life, the Java virtual machine (JVM) allocates enough memory on the heap to accommodate the object's instance variables. When that memory is first allocated, however, the data it contains is unpredictable. If the memory were used as is, the behavior of the object would also be unpredictable. To guard against such a scenario, Java makes certain that memory is initialized, at least to predictable default values, before it is used by any code.

Initialization is important because, historically, uninitialized data has been a common source of bugs. Bugs caused by uninitialized data occur regularly in C, for example, because it doesn't have built-in mechanisms to enforce proper initialization of data. C programmers must always remember to initialize data after they allocate it and before they use it. The Java language, by contrast, has built-in mechanisms that help you ensure proper initialization of the memory occupied by a newly-created object. With proper use of these mechanisms, you can prevent an object of your design from ever being created with an invalid initial state.

Object Initialization Mechanisms

The Java language has three mechanisms dedicated to ensuring proper initialization of objects:

· constructors

· instance variable initializers

· instance initializers

Instance variable initializers and instance initializers may together be called simply "initializers." All three mechanisms result in Java code that is executed automatically when an object is created. When you allocate memory for a new object with the new operator, the Java virtual machine will insure that initialization code is run before you can use the newly-allocated memory. If you design your classes such that initializers and constructors always produce a valid state for newly-created objects, there will be no way for anyone to create and use an object that isn't properly initialized.

Default initial values

Up to this point, the examples used in this book have done no explicit initialization of instance variables. This is perfectly legal in Java, and results in predictable default initial values, which are based only upon the type of the variable. Table 4-1 shows the default initial values for each of the variable types. (These are the default initial values for both instance and class variables. Initialization of class variables will be discussed in depth in Chapter 6.)

	Type
	Default Value

	boolean
	false

	byte
	(byte) 0

	short
	(short) 0

	int
	0

	long
	0L

	char
	\u0000

	float
	0.0f

	double
	0.0d

	object reference
	null

Table 4-1. Default values for fields

If you don't explicitly initialize an instance variable, then that variable will still have its default initial value when new returns its reference. For example, in all the versions of class CoffeeCup prior to this chapter, the innerCoffee field was not explicitly initialized (The class contains no constructors or initializers.):

// This class has no constructors or initializers

public class CoffeeCup {

 private int innerCoffee;

 // The rest of the class...

}

As a result, when the reference to a new CoffeeCup object is first returned by new, the innerCoffee field would be its default initial value. Because innerCoffee is an int, its default initial value is zero.

Note that this means that if you explicitly initialize innerCoffee, say to a value of 100, then when each CoffeeCup object is created, innerCoffee will, in effect, be initialized twice. First, innerCoffee will be given its default initial value of zero. Later, the zero will be overwritten with the proper initial value of 100. All of this takes place while the Java virtual machine is creating the new object -- before it returns the reference to the new object. By the time the reference to a new CoffeeCup object is returned from the new operator, the innerCoffee field will be set to 100.

As mentioned in Chapter 2, local variables do not participate in the default initial values that instance variables (and, as you will see in Chapter 6, class variables) are guaranteed to receive. The value of a local variable is undefined until you explicitly initialize it.

Constructors

The central player in object initialization is the constructor. In Java, constructors are similar to methods, but they are not methods. Like a method, a constructor has a set of parameters and a body of code. Unlike methods, however, constructors have no return type. Like methods, you can give access specifiers to constructors, but unlike methods, constructors with public, protected, or package access are not inherited by subclasses. (Also, instead of determining the ability to invoke a method, the access level of a constructor determines the ability to instantiate an object.)

Constructor Basics

In the source file, a constructor looks like a method declaration in which the method has the same name as the class but has no return type. For example, here is a constructor declaration for class CoffeeCup:

// In source packet in file init/ex2/CoffeeCup.java

class CoffeeCup {

 // Constructor looks like a method declaration

 // minus the return type

 public CoffeeCup() {

 // Body of constructor

 }

 // ...

}

As with methods, you can overload constructors by varying the number, types, and order of parameters. Here is a class CoffeeCup with two constructors:

// In source packet in file init/ex3/CoffeeCup.java

class CoffeeCup {

 private int innerCoffee;

 public CoffeeCup() {

 innerCoffee = 237;

 }

 public CoffeeCup(int amount) {

 innerCoffee = amount;

 }

 // ...

}

When you instantiate an object with new, you must specify a constructor. For example, given the CoffeeCup class above that has two constructors, you could instantiate it in either of these two ways:

// In source packet in file init/ex3/Example3.java

class Example3 {

 public static void main(String[] args) {

 // Create an empty cup

 CoffeeCup cup1 = new CoffeeCup();

 // Create a cup with 355 ml of coffee in it

 CoffeeCup cup2 = new CoffeeCup(355);

 }

}

The No-Arg Constructor

In Java jargon, constructors that take no parameters (or no arguments) are called "no-arg constructors." In the code shown above, the first instantiation of a CoffeeCup object specifies the no-arg constructor. The second instantiation specifies the constructor that requires an int as its only parameter.

The this() invocation

From within a constructor, you can explicitly invoke another constructor from the same class by using the this() statement. You may want to do this if you have several overloaded constructors in a class, all of which must execute much of the same code. Here's an example:

// In source packet in file init/ex4/CoffeeCup.java

class CoffeeCup {

 private int innerCoffee;

 public CoffeeCup() {

 this(237); // Calls other constructor

 // Could have done more construction here

 }

 public CoffeeCup(int amount) {

 innerCoffee = amount;

 }

 // ...

}

In this example, the no-arg constructor invokes the constructor that takes an int as its only parameter. It passes 237 to the other constructor, which assigns that value to innerCoffee.

You cannot call this() from methods, only from constructors. If you do call this()in a constructor, you must call it first, before any other code in the constructor, and you can only call it once. Any code you include after the call to this() will be executed after the invoked constructor completes.

Constructors Are Not Methods

To further illustrate the difference between methods and constructors, consider this fact: The name of a class is a valid name for its methods. In other words, class CoffeeCup could have methods named CoffeeCup:

// In source packet in file init/ex5/CoffeeCup.java

// THIS WORKS, BUT IT IS AN EXAMPLE OF POOR METHOD NAMING

class CoffeeCup {

 private int innerCoffee;

 public CoffeeCup() {
// The constructor

 innerCoffee = 237;

 }

 public void CoffeeCup() {
// The method

 innerCoffee = 99;

 }

 // ...

}

Given the above definition of class CoffeeCup, you could legally do the following:

// In source packet in file init/ex5/Example5.java

class Example5 {

 public static void main(String[] args) {

 CoffeeCup cup = new CoffeeCup(); // invoke the constructor

 cup.CoffeeCup(); // invoke the method

 }

}

Although it is legal to give a method the same name as a class, in practice you should never do so, in part because other programmers might confuse it with a constructor, but also because it breaks many of the rules for good method naming. First, a class name is not a verb; it's a noun (at least it should be a noun). Method names should be verbs. You should name methods after the action they perform, and "CoffeeCup" is not an action. Also, "CoffeeCup" doesn't follow the naming convention for methods, in which the first letter is lowercase. The purpose of this example is merely to highlight the fact that constructors aren't methods by showing that a constructor does not conflict with a method that has the same signature. Java's recommended naming conventions are described later in this chapter, in the Design Corner section.

Default constructors

If you declare a class with no constructors, the compiler will generate a constructor for you. Such automatically-generated constructors, which are called default constructors, take no parameters (they are no-arg constructors) and have empty bodies. Because the compiler will automatically generate a default constructor if you don't declare any constructors explicitly, all classes are guaranteed to have at least one constructor.

For example, if you declare a CoffeeCup class without declaring a constructor explicitly:

// In source packet in file init/ex6/CoffeeCup.java

class CoffeeCup {

 private int innerCoffee;

 public void add(int amount) {

 innerCoffee += amount;

 }

 //...

}

The compiler will generate the same class file as if you had explicitly declared a no-arg constructor with an empty body:

// In source packet in file init/ex7/CoffeeCup.java

class CoffeeCup {

 private int innerCoffee;

 public CoffeeCup() {

 }

 public void add(int amount) {

 innerCoffee += amount;

 }

 //...

}

Instance Initialization Methods

When you compile a class, the Java compiler creates an instance initialization method for each constructor you declare in the source code of the class. Although the constructor is not a method, the instance initialization method is. It has a name, <init>, a return type, void, and a set of parameters that match the parameters of the constructor from which it was generated. For example, given the following two constructors in the source file for class CoffeeCup:

// In source packet in file init/ex8/CoffeeCup.java

class CoffeeCup {

 public CoffeeCup() {

 //...

 }

 public CoffeeCup(int amount) {

 //...

 }

 // ...

}

the compiler would generate the following two instance initialization methods in the class file for class CoffeeCup, one for each constructor in the source file:

// In binary form in file init/ex8/CoffeeCup.class:

public void <init>(CoffeeCup this) {...}

public void <init>(CoffeeCup this, int amount) {...}

Note that <init> is not a valid Java method name, so you could not define a method in your source file that accidentally conflicted with an instance initialization method. (To be precise, <init> is not a method in the Java language sense of the term, because it has an illegal name. In the compiled, binary Java class file, however, it is a valid method.)

Also, the this reference passed as the first parameter to <init> is inserted by the Java compiler into the parameter list of every instance method. For example, the method void add(int amount) in the source file for class CoffeeCup would become the void add(CoffeeCup this, int amount) method in the class file. The hidden this reference is the way in which instance methods, including instance initialization methods, are able to access instance data.

If you don't explicitly declare a constructor in a class, the Java compiler will create a default constructor on the fly, then translate that default constructor into a corresponding instance initialization method. Thus, every class will have at least one instance initialization method.

When the compiler generates an instance initialization method, it bases it on a constructor. It gives the method the same parameter list as the constructor, and it puts the code contained in the constructor's body into the method's body. But the instance initialization method does not necessarily represent a mere compilation of the constructor with the name changed to <init> and a return value of void added. Often, the code of an instance initialization method does more than the code defined in the body of its corresponding constructor. The compiler also potentially adds code for any initializers and an invocation of the superclass's constructor.

Initializers

Besides constructors, Java offers one other way for you to assign an initial value to instance variables: initializers. As mentioned previously, the two kinds of initializers in Java are instance variable initializers and instance initializers.

Instance variable initializers

In a constructor, you have the freedom to write as much code as needed to calculate an initial value. In an instance variable initializer, by contrast, you have only an equals sign and an expression. The left-hand side of the equals sign is the instance variable being initialized. The right-hand side of the equals sign can be any expression that evaluates to the type of the instance variable.

For example, if you wanted to always start coffee cups out with 355 milliliters of fresh brewed coffee in them, you could initialize innerCoffee with a constructor:

// In source packet in file init/ex9/CoffeeCup.java

class CoffeeCup {

 private int innerCoffee;

 public CoffeeCup() {

 innerCoffee = 355;

 }

 // ...

}

Alternatively, you could initialize innerCoffee with an instance variable initializer:

// In source packet in file init/ex10/CoffeeCup.java

class CoffeeCup {

 private int innerCoffee = 355; // "= 355" is an initializer

 // no constructor here

 // ...

}

Instance Initializers

Java 1.1 introduced instance initializers. Instance initializers, which may also be called instance initialization blocks, are blocks of code (marked by open and close curly braces) that sit in the body of a class, but outside the body of any method declared in that class.

For example, here is the same CoffeeCup class with its innerCoffee variable initialized by an instance initializer:

// In source packet in file init/ex19/CoffeeCup.java

class CoffeeCup {

 private int innerCoffee;

 // The following block is an instance initializer

 {

 innerCoffee = 355;

 }

 // no constructor here

 // ...

}

This manner of initializing innerCoffee yields the same result as the previous two examples: innerCoffee is initialized to 355.

Instance initializers are a useful alternative to instance variable initializers whenever: (1) initializer code must catch exceptions (described in Chapter 13), or (2) perform fancy calculations that can't be expressed with an instance variable initializer. You could, of course, always write such code in constructors. But in a class that had multiple constructors, you would have to repeat the code in each constructor. With an instance initializer, you can just write the code once, and it will be executed no matter what constructor is used to create the object. Instance initializers are also useful in anonymous inner classes (described in Chapter 11), which can't declare any constructors at all.

Note that the code inside an instance initializer may not return. In addition, instance initializers have special rules regarding exceptions. Information about these special rules is given in Chapter 13.

Initializers Can't Make Forward References

When you write an initializer (either an instance variable initializer or instance initializer), you must be sure not to refer to any instance variables declared textually after the variable being initialized. In other words, you can't make a forward reference from an initializer. (A forward reference is simply a use of a variable declared textually after the current statement in the source file.) If you disobey this rule, the compiler will give you an error message and refuse to generate a class file.

When an object is created, initializers are executed in textual order -- their order of appearance in the source code. The forward-referencing rule helps prevent initializers from using instance variables that have yet to be properly initialized.

For example, here is a virtual cafe class that has four chairs for every table:

// In source packet in file init/ex11/VirtualCafe.java

class VirtualCafe {

 private int tablesCount = 20;

 private int chairsCount = 4 * tablesCount;

 //...

}

These initializers work fine. The chairsCount initializer, = 4 * tablesCount, refers to an instance variable declared textually before it, so the compiler is happy. Because initializers are executed in textual order, tablesCount is already initialized to 20 by the time chairsCount's initializer multiplies it by four. Thus, chairsCount is initialized to 80.

If you were able to use instance variables declared textually later, you could end up with unexpected behavior:

// In source packet in file init/ex12/VirtualCafe.java

// THIS WON'T COMPILE, BUT AS A THOUGHT EXPERIMENT,

// IMAGINE IT WERE POSSIBLE

class VirtualCafe {

 private int chairsCount = 4 * tablesCount;

 private int tablesCount = 20;

 //...

}

If the above declaration were possible, chairsCount's initializer would use tablesCount before tablesCount were assigned a value of 20. At that point, the tablesCount variable would have its default initial value of zero. Hence, this code would initialize chairsCount to four times zero. If you do the math, you will discover that, in this case, chairsCount does not get initialized to 80.

Getting around the forward reference rule

Although this kind of forward referencing is disallowed by the compiler in an attempt to help programmers avoid just the above kind of mistake, you can't let down your guard completely. There is still a way you could inadvertently (or purposefully) circumvent the compiler's preventative restrictions:

// In source packet in file init/ex13/VirtualCafe.java

class VirtualCafe {

 private int chairsCount = initChairsCount();

 private int tablesCount = 20;

 private int initChairsCount() {

 return tablesCount * 4;

 }

 //...

}

The above code compiles fine, and has the same result as the previous thought experiment. Here chairsCount's initializer sneakily invokes a method that uses tablesCount before its initializer has been executed. When initChairsCount() calculates tablesCount * 4, tablesCount is still at its default initial value of zero. As a result, initChairsCount() returns zero, and chairsCount is initialized to zero.

Other Ways to Instantiate Objects

Besides the new operator, Java provides three other ways to instantiate objects:

· Invoking clone() on an object

· Deserializing an object

· Invoking the newInstance() method of class java.lang.Class

These other ways of creating objects are described in later chapters. Cloning is described in Chapter 14; deserialization in Chapter 19; and newInstance() in Chapter 23.

More Object Initialization to Come

Although the information here may seem like a lot, there is still more to object initialization, in particular, the way in which initialization interacts with inheritence. Information about initialization and inheritance will be given in Chapter 7.

Design Corner

Behind the Scenes

[bv: perhaps show that diagram of relationship between language, class file, and virtual machine.] The <init> method is not actually part of the Java language. Rather, it is something the Java virtual machine expects to see in a Java class file. This distinction is significant because the Java language does not depend on the class file. Java source can be compiled into other binary formats, including native executables. A Java compiler that translates Java language source into some other binary format need not generate a method named <init>, so long as objects are initialized in the proper way at the proper time. The Java Language Specification (JLS) details the order of initialization and when it occurs, but doesn't say how it is actually accomplished. Still, understanding how initialization works inside class files can help you understand the order of initialization in the language.

Class Initialization

Variables have lifetimes. The lifetime of an instance variable matches that of the object to which it belongs. The lifetime of a class variable matches that of the class to which it belongs. The lifetime of a local variable is from the point it is created to the point where it goes out of scope. The Java language and virtual machine have mechanisms to ensure each of these kinds of variables are initialized before they are used.

[bv: talk briefly about the lifetime of a class here] [bv:Clean up this class init stuff. It is too redundant with object init stuff and a bit too cutseypie with suger packets.]

Introduce class variable initializers and static initialization blocks.

Default Initial Values

Class variables get initialized to the same default initial values as instance variables. These default initial values are shown in Table 4-1.

Class Variable Initializers

public class SugarHolder {

 private int sugarPacketCount; // instance variable

 private static int sugarPacketsInCafeCount; // class variable

}

Class SugarHolder contains one instance variable and one class variable. In this example, the SugarHolder class maintains a class variable, sugarPacketsInCafeCount, to track the total number of packets of sugar sitting in sugar holders throughout the cafe. The instance variable, sugarPacketCount, just tracks the number of packets of sugar in an individual sugar holder.

In the example above, sugarPacketsInCafeCount will have an initial value of zero, because zero is the default initial value for ints. If you wanted a different initial value for sugarPacketsInCafeCount, you would have to explicitly initialize it to the other value. For example, imagine you are simulating a cafe that always starts out with five sugar holders, each of which contains five sugar packets. You could easily initialize the sugarPacketsInCafeCount to 25 using a class variable initializer. You write a class variable initializer with an equals sign and an expression, as shown below:

class SugarHolder {

 private int sugarPacketCount;

 private static int sugarPacketsInCafeCount = 25;

}

In the above example, sugarPacketsInCafeCount will be set to 25 before any use of the class. The class variable initializer is " = 25".

The Java compiler enforces the same forward referencing rule on class variable initializers. Class variable initializers may refer to any class variable that appears textually before it in the class, but not after. This rule aims to prevent situations in which a class variable is used before it is initialized.

Some examples of static initialization blocks are shown below. In these examples the SugarHolder class from an earlier example has been enhanced to include class variables that track the total number of particular types of sugar packets in the cafe. This cafe offers four type of sugar packets, each of which comes in a different color package. The white packet contains plain old sugar. The brown packet contains unbleached brown granules of sugar. The pink and blue packets contain two different brands of sugar substitutes. The first example shows an unruly class initializer that refers to class variables that appear textually after it. Because of this one class variable initializer's disregard for the rules, the entire class will be rejected by the compiler.

class SugarHolder {

 private int sugarPacketCount;

 // This won't compile because the following class

 // variable initializer refers to class variables

 // that appear textually after it.

 private static int sugarPacketsInCafeCount =

 whitePacketsInCafeCount + brownPacketsInCafeCount

 + pinkPacketsInCafeCount + bluePacketsInCafeCount;

 private static int whitePacketsInCafeCount = 10;

 private static int brownPacketsInCafeCount = 5;

 private static int pinkPacketsInCafeCount = 5;

 private static int bluePacketsInCafeCount = 5;

}

The following example rectifies the problem by simply moving the declaration of sugarPacketsInCafeCount such that it appears textually after the declarations of the class variables it uses.

class SugarHolder {

 private int sugarPacketCount;

 private static int whitePacketsInCafeCount = 10;

 private static int brownPacketsInCafeCount = 5;

 private static int pinkPacketsInCafeCount = 5;

 private static int bluePacketsInCafeCount = 5;

 // This class will compile because the following class

 // variable initializer only refers to other class

 // variables that appear textually before it.

 private static int sugarPacketsInCafeCount =

 whitePacketsInCafeCount + brownPacketsInCafeCount

 + pinkPacketsInCafeCount + bluePacketsInCafeCount;

}

Static Initialization Blocks

If you need to initialize a class variable in a manner too complex to express with an equals sign and expression, you can write a static initialization block. A static initialization block is a code block preceded by the word static, as in:

class SugarHolder {

// ...

static {

// code for the static initialization

// goes here

}

// ...

For a more concrete example, suppose instead of starting over with a fresh cafe each time you run your simulation program, you want to continue the state of the previous cafe. In this case you could write a static initialization block such as the one shown below:

// Defined in file SugarHolder.java

public class SugarHolder {

 private int sugarPacketCount;

 private static int sugarPacketsInCafeCount;

 static {

 // Initialize the total number of sugar packets with

 // state data left over from previous execution of

 // the simulation program.

 int sugarHolderCount =

 PersistentStorage.getSugarHolderCount();

 for (int i = 0; i < sugarHolderCount; ++i) {

 sugarPacketsInCafeCount +=

 PersistentStorage.getSugarPacketCount(i);

 }

 }

}

// Defined in file PersistentStorage.java:

public class PersistentStorage {

public int getSugarPacketCount(int sugarHolderIndex) {

// For now return something that looks good. Later,

// actually set up persistent storage

return 23;

}

// ...

}

In the above example, the code in the static initialization block will be executed before the class is used, resulting in a sugarPacketsInCafeCount that is initialized to a value retrieved from persistent storage.

You can include in a class as many class variable initializers as there are class variables, and as many static initialization blocks as you wish. You can place static initialization blocks anywhere in your class. You could, for example, write one static initialization block that initializes several class variables. Alternatively, you could write a separate static initialization block for each class variable. You could even write several static initialization blocks for a single class variable, although in this case your peers might think you're a bit odd. The point here is that there is no one-to-one correspondence between class variables and static initialization blocks. You can, in fact, create static initialization blocks in classes that don't have any class variables.

Static initialization blocks have full privileges of regular static methods, with one exception. A static initialization block may refer to any class variable that appears textually before it in the class, but not after. The Java compiler will balk if one of your static initialization blocks uses or assigns a class variable the appears textually after it, even though such variables are in scope.

The next example includes a static initialization block with a healthy disrespect for authority. Like the irreverent class variable initializer from a previous example, this static initialization block accesses class variables that appear textually after it. In this case, authority will win again, because the class will not compile.

// Defined in file SugarHolder.java:

// This class won't compile, because the static initialization block

// refers to class variables that appear textually after it.

class SugarHolder {

 private int sugarPacketCount;

 private static int sugarPacketsInCafeCount;

 static {

 // Initialize the total number of sugar packets with

 // state data left over from previous execution of

 // the simulation program.

 int sugarHolderCount =

 PersistentStorage.getSugarHolderCount();

 for (int i = 0; i < sugarHolderCount; ++i) {

 sugarPacketsInCafeCount +=

 PersistentStorage.getSugarPacketCount(i);

 whitePacketsInCafeCount +=

 PersistentStorage.getWhitePacketCount(i);

 brownPacketsInCafeCount +=

 PersistentStorage.getBrownPacketCount(i);

 pinkPacketsInCafeCount +=

 PersistentStorage.getPinkPacketCount(i);

 bluePacketsInCafeCount +=

 PersistentStorage.getBluePacketCount(i);

 }

 }

 private static int whitePacketsInCafeCount;

 private static int brownPacketsInCafeCount;

 private static int pinkPacketsInCafeCount;

 private static int bluePacketsInCafeCount;

}

// Defined in file PersistentStorage.java:

public class PersistentStorage {

public int getSugarPacketCount(int sugarHolderIndex) {

return 23;

}

public int getWhitePacketCount(int sugarHolderIndex) {

return 6;

}

public int getBrownPacketCount(int sugarHolderIndex) {

return 7;

}

public int getPinkPacketCount(int sugarHolderIndex) {

return 5;

}

public int getBluePacketCount(int sugarHolderIndex) {

return 5;

}

// ...

}

One solution to the problem in the previous example is to simply move the colored packet class variables above the static initialization block, as shown below:

// This class compiles happily.

class SugarHolder {

 private int sugarPacketCount;

 private static int sugarPacketsInCafeCount;

 private static int whitePacketsInCafeCount;

 private static int brownPacketsInCafeCount;

 private static int pinkPacketsInCafeCount;

 private static int bluePacketsInCafeCount;

 static {

 // Initialize the total number of sugar packets with

 // state data left over from previous execution of

 // the simulation program.

 int sugarHolderCount =

 PersistentStorage.getSugarHolderCount();

 for (int i = 0; i < sugarHolderCount; ++i) {

 sugarPacketsInCafeCount +=

 PersistentStorage.getSugarPacketCount(i);

 whitePacketsInCafeCount +=

 PersistentStorage.getWhitePacketCount(i);

 brownPacketsInCafeCount +=

 PersistentStorage.getBrownPacketCount(i);

 pinkPacketsInCafeCount +=

 PersistentStorage.getPinkPacketCount(i);

 bluePacketsInCafeCount +=

 PersistentStorage.getBluePacketCount(i);

 }

 }

}

Another solution is to move the problem-causing portion of the static initialization block code to another static initialization block that appears textually after the colored packet class variables, as in:

// This class also compiles happily.

class SugarHolder {

 private int sugarPacketCount;

 private static int sugarPacketsInCafeCount;

 static {

 // Initialize the total number of sugar packets with

 // state data left over from previous execution of

 // the simulation program.

 int sugarHolderCount =

 PersistentStorage.getSugarHolderCount();

 for (int i = 0; i < sugarHolderCount; ++i) {

 sugarPacketsInCafeCount +=

 PersistentStorage.getSugarPacketCount(i);

 }

 }

 private static int whitePacketsInCafeCount;

 private static int brownPacketsInCafeCount;

 private static int pinkPacketsInCafeCount;

 private static int bluePacketsInCafeCount;

 static {

 // Initialize the total number of colored packets with

 // state data left over from previous execution of

 // the simulation program.

 int sugarHolderCount =

 PersistentStorage.getSugarHolderCount();

 for (int i = 0; i < sugarHolderCount; ++i) {

 whitePacketsInCafeCount +=

 PersistentStorage.getWhitePacketCount(i);

 brownPacketsInCafeCount +=

 PersistentStorage.getBrownPacketCount(i);

 pinkPacketsInCafeCount +=

 PersistentStorage.getPinkPacketCount(i);

 bluePacketsInCafeCount +=

 PersistentStorage.getBluePacketCount(i);

 }

 }

}

[bv: mention things get initialized in textual order?]

As an example of a static initialization block in a class that contains no class variables, consider the StaticGreeting class below. From outward appearances, this class behaves like a typical "Hello World" program with a coffee-oriented message. This program, however, manages to print its greeting before the main method is ever invoked. Even though the class does not contain any class variables, the static intialization block will be rolled into a <clinit> method. The Java Virtual Machine will execute the <clinit> method when the class is initialized, before main is invoked, and the <clinit> method will print out the greeting.

class StaticGreeting {

 public static void main(String args[]) {

 }

 static {

 System.out.println("Wake up and smell the coffee!");

 }

}

When executed, the above program prints out:

Wake up and smell the coffee!

The example above points out that code within a static initialization block is not limited to just initializing class variables, but can do anything a regular static method can do, so long as it doesn't access class variables that appear textually after it. Yet as a design guideline, you should try to keep initializers just focused on initialization.

Be Careful

Code within static initalizers can call other static methods in the class, can instantiate an object of its own type and call instance methods on the object, can call methods in other classes and pass the object to those methods, all before the class has been completely initialized. This means that you have the power to write static initialization blocks such that a class is used before it is fully initialized. As a result some class variables could be used while they still have their default initial values, rather than their proper initial values. For example, the following program demonstrates one way a class can be used before it is initialized:

class StaticGreeting2 {

 public static void main(String args[]) {

 }

 static {

 printGreeting();

 }

String s = "Wake up and smell the coffee!";

 static void printGreeting() {

 System.out.println(s);

 }

}

When executed, the above program prints out the following decidedly feeble greeting:

null

In the previous example, the static initialization block invoked static method printGreeting before String s was initialized with a cheery greeting. In effect, the static initialization block used a loophole in the law against referring to class variables that appear textually later. It invoked a method that refers to the class variable. In so doing, the class variable is used while it still had its default initial value of null. When designing static initialization blocks, you should attempt to ensure that class variables are not used before they are fully initialized.

Static init blocks can call static methods. So methods can run even when things haven't had their initializers run. This is true for instance fields too. BUT, because they always have their default value, at least things are predictable.

[bv: refer to exceptions chapter, as in obj init chapter.] Static init blocks can't result in checked exceptions being thrown. They can invoke methods that may throw checked exceptions, but they must catch them. Similar is true for class var initializers.

The Class Initialization Method

All the class variable initializers and static initialization blocks of a class are collected by the Java compiler and placed into one special method, the class initialization method. This method is named "<clinit>". Static initialization blocks and class variable initializers are executed in textual order, because the code of the <clinit> method implements the class variable initializers and static initialization blocks in the order in which they appear in the class declaration. If a class has no class variable initializers or static initialization blocks, it will have no <clinit> method. The Java Virtual Machine invokes the <clinit> method, if it exists, once for each class. Regular methods cannot invoke a <clinit> method, because <clinit> is not a valid method name in Java. During a class's preparation phase, the class variables are set to default values. During the initialization phase, the Java Virtual Machine executes the <clinit> method, which sets class variables to their proper initial values. [bv: mention name spaces]

When Do Class Variables Get Initialized?

The Java Virtual Machine initializes classes and interfaces on their first active use. An active use is:

· The invocation of a method declared by the class (not inherited from a superclass)

· The invocation of a constructor of the class

· The use or assignment of a field declared by a class (not inherited from a superclass), except for fields that are both static and final, and are initialized by a compile-time constant expression.

[bv: perhaps give a nice example of this.]

Special Treatment for Primitive Constants

The Java compiler resolves references to fields that are both static and final, and initialized by a compile-time constant expression, to a copy of the constant value. An example of two constant fields are shown below as part of class CoffeeCup. The maxCapacity field is initialized by a compile- time constant, but the currentCoffeeAmount field is not. References to the maxCapacity field are compiled to refer directly to a constant pool entry with the constant value 250. The maxCapacity field is not initialized by the <clinit> method. However, because the constant value of currentCoffeeAmount is not known at compile time, it must be initialized by <clinit>. The Java Virtual Machine will execute the <clinit> method during the initialization phase of the class, and the <clinit> method will invoke Math.random, multiply the result by 250, and assign currentCoffeeAmount its initial value, which will thereafter remain constant.

class CoffeeCup {

static final int maxCapacity = 250; // milliliters

static final int currentCoffeeAmount =

 (int) (Math.random() * 250d);

}

The use or assignment of a static, final field is not an active use of a class, because such fields are not initialized via the <clinit> method. A constant field is a class variable that is declared final as well as static, and is initialized with a compile-time constant expression. Such fields are resolved to constant expressions To initialize a class, the Java Virtual Machine executes the class's <clinit> method, if it has one. A class's superclass must be initialized before the class is initialized, so the Java Virtual Machine will invoke the <clinit> methods of the class's superclass if it hasn't yet been invoked. The code of a <clinit> method does not explicitly invoke a superclass's <clinit> method, therefore the Java Virtual Machine must make certain the <clinit> methods of superclasses have been executed before it invokes the <clinit> method of a class.

To initialize an interface, the Java Virtual Machine executes the interface's <clinit> method, if it has one, just as it does for classes. An interface may have a <clinit> method because interfaces can contain constants. In interfaces, constants are public, final, static variables. The variables must have an initialization expression, which is the interface version of a class variable initializer. Interfaces cannot have static initialization blocks. As with classes, only initializers that require evaluation of expressions that are not compile-time constants will end up as code in the <clinit> method. Therefore, if an interface has at least one constant that is initialized by an expression that is not a compile time constant, that interface will have a <clinit> method. Initialization of an interface does not require prior initialization of its superinterfaces.

[SHOW THAT THESE ARE PUT INTO SEPARATE CLASS FILES AND THAT THEY ARE USED BY THE CASE STATEMENTS OF SWITCHES, AND TO DO CONDITIONAL COMPILATION.]

The End of an Object's Life

This chapter shows you how to ensure proper cleanup of objects at the end of their lives. It discusses garbage collection, finalizers, and cleanup routines to release non-memory resources.

Here, "end of an object's lifetime" does not mean when an object is garbage collected, but when your program stops using it. If your object's validity depends upon its exclusive hold on a non-memory resource, such as a file handle, your object should release that resource not upon garbage collection, but upon

Class FileOutputStream is the perfect example of a cleanup method (close()) and the double checking done by a finalizer.

[MENTION freeMemory(), and totalMemory() in Runtime and runFinalization(), gc() in both System and Runtime.]

[A] Cleanup

Cleanup is about releasing resources at the end of an object's life.

I. Cleanup is important because objects use finite resources which must be released back to the system at the end of an object's life. Certainly memory, possibly other resources. Java has a garbage collector to clean up memory. You must write Java code to clean up any non-memory resource, including possibly a special method called a finalizer which is automatically run by the garbage collector when the object is reclaimed.

[B] The Garbage Collector

I. Paint a general picture of the garbage collector

II. Explain when finalize() is called by the garbage collector. Perhaps paint a picture of the garbage collection session.

III. Objects may never get garbage collected. A lot of times garbage collection happens only when the system runs out of memory. If it doesn't ever run out of memory, it doesn't ever garbage collect.

IV. You can give the gc a hint that this would be a good time to run.

V. Finalizers may or may not be run on exit, depending upon the runFinalizersOnExit() parameter of System? Did this get into Java 1.1?

VI. Describe the process of first pass, second pass.

[B] Finalizers

I. Finalizers can help if you allocate memory in native methods.

II. Could use finalizers to release memory created in some other way than by calling new. (For example, in native methods.) "Finalizers are about memory." That's all they should be worrying about.

III. Finalizers can use try/catch to handle any exceptions thrown during their execution. Any uncaught exceptions thrown by the finalizer itself are ignored by the JVM.

IV. Don't resurrect objects. Clone() an existing one if you have to.

V. Finalizer() is called only once by the garbage collector. So if you resurrect it, and then it gets garbage collected again, finalizer() won't get called the second time.

VI. The possibility of object resurrection shows that the gc must do another marking process after the finalizers have been run.

VII. Always invoke super.finalize() at the end of your finalizer().

[B] Why use a finalizer?

1) Not very many compelling reasons. Most of the time, don't.

2) Give an example of using the finalizer to double check on a sloppy programmer who didn't call close() or cleanup(). (Talk about just opening the file when you need it, using it, then closing it all in one method. In other words, the file handle is not part of the object's long term state. In this case, you don't have to worry about close(), cleanup(), or finalize(). But if it takes up too much time to do all that openning and closing...)

3) One of the few things finalizers are good for is to keep track of data about the garbage collector's performance. Another is for freeing memory that was allocated via native methods. Even this, however, should be able to fit into a cleanUp() method.

4) Even though Object() has a protected finalize(), that doesn't mean the the Java Virtual Machine will always call it. Java Virtual Machine implementations should be smart about figuring out whether you actually override it or even do something useful in the overridden guy.

[B] Strategies for ensuring the release of non-memory resources Clean up: Another area in which the garbage collector will influence your designs and implementations is in object clean up. In C++ there is a destructor that does the opposite job of the constructor. The destructor's primary use is to explicitly free any memory pointed to by data members of the object. There is, of course, no need to do this in Java, because the garbage collector takes care of freeing memory. However, C++ destructors were also used to release any non-memory resources, such as file handles or graphic display contexts, that may have been used by the object. It is important to release resources such as these, because there is a finite number of them available to the program. If you do not release these kinds of resources when you are done with them, your program may run out of them. In Java, such resources are not released by the garbage collector, so the programmer must release them explicitly. Because Java objects have no destructors, the design challenge becomes one of making sure non-memory resources will be released when an object doesn't need them anymore.

A straightforward solution is to design objects that don't hang onto a resource for their entire lifetimes. Instead, aim for objects that grab a resource only when it is needed during a method invocation, and then release the resource before returning from the method. Objects designed in this way don't need cleanup. However, this won't work in all cases. So, when you have an object that requires a release of non- memory resources upon the object's "death," you should define a method that performs this service, and invoke it on your object when your program no longer needs the object. This method will end up being invoked where you would have explicitly deallocated an object in a non-garbage-collected language such as C++. So it resurrects that old problem of figuring out when an object is no longer needed. You'll probably want to write this function to recognize that it has been accidentally called twice and either throw an exception or ignore the second call. Also, you could even put a check in the finalizer of the class to make sure the cleanup routine has been called. If it hasn't been called, the finalizer could call it.

Finalizers: This brings us to finalizers. You may be wondering, why can't a finalizer be used for clean up? Isn't it kind of like a destructor? It turns out that often the best finalizer is no finalizer.

Finalizers are guaranteed to be called before the memory used by an object is reclaimed. However, there is no guarantee that any object's memory will ever be reclaimed. Hence, there is no guarantee that a finalizer will ever be called. (There is a promise that, barring catastrophic error conditions, all finalizers will be run on any left-over objects when the Java Virtual Machine exits; However, this likely too late if your program is waiting for a file handle to be released. (Besides, I'm not convinced it happens anyway.)) Therefore, it is vital that you never rely on a finalizer to free finite resources, such as file handles, that may be needed later by your program.

You might be tempted to use the finalizer as your clean up routine, given that it is perfectly legal in Java to invoke a finalizer explicitly just like any other method. You could write the finalizer such that it does the clean up the first time it is invoked, and does nothing any subsequent time it is invoked. In this way it would serve as a fail safe in case you ever forget to invoke it explicitly. However, this is not the best approach because finalizers require CPU time to run. (One finalizer that just checks an instance variable, discovers the method has already been finalized, and returns won't take too long. But if your program generates 1,000,000 of those objects, the small amount of time for each could add up to something significant.) Also, objects without finalizers are "easier" for the garbage collector to dispose of. The heap space for an object might get reclaimed sooner if that object doesn't have a finalizer. (Explain the process?) Therefore, it is usually better that clean up be done by a method that is not the finalizer, so that clean up is done in a program thread, not a garbage collector thread. In this manner you can retain control of precisely when the clean up happens, and ease the garbage collector's demands on CPU time.

[A] Memory Management

Stress: One last thing you need to keep in mind in your designs and implementations is the garbage collector's stress level. If your program is generating millions of little objects and discarding them shortly after their creation, you could be placing a heavy burden on the garbage collector, which could degrade the performance of your program. Because each Java Virtual Machine can implement its garbage collector differently, giving lots of work to the garbage collector can affect your program's performance differently on different platforms. One way to combat this is to redesign your program so it doesn't create millions of little objects with short lifetimes. If this is not possible, you may want to create a container class that allows you to reuse little objects that have come to the end of their short lifetimes. By reusing an object, rather than discarding it and allocating a new one, you reduce the garbage collector's work load. Garbage collection doesn't solve all memory management problems. You could still run out of memory, and you could still have a memory leak. Don't leave unused references to objects lying around. Null out the reference. It's OK to return something you allocated. A garbage-collected heap solves certain design dilemmas common in environments where programmers must do their own deallocation, such as returning objects created by a method. Returning objects: Having a garbage-collected heap allows you to treat objects in your Java programs a bit more like you treat them in the real world. In a language such as C or C++, where the programmer must explicitly deallocate memory, there is a pesky design issue whenever a function needs to return a pointer to some memory that it allocated. It is common among programmers to consider such a function unfriendly, because the function requires some other function to free the memory it allocated. Idealists pontificate about the virtuous program in which all functions, before returning, free any memory that they allocate. Indeed this is a worthy goal, but unfortunately not always practical. In Java, the issue goes away. If you find yourself in a similar situation in a Java program, just create the new object and return it. When the recipient of the object is done with it, the garbage collector will take care of freeing the memory. A good example is a method from which you want to return several ints. In Java, you can guiltlessly allocate an array of ints and return the array. When the program is done with the array object, the garbage collector will reclaim the memory. Can say: A Java object does not have a destructor, like C++ objects. Given the architecture of the JVM, Java object lives to not have clean, well-defined ends. Where a C++ object experiences a traumatic and sudden death, a Java object kind of fades away.

Why clean up?
Every object in a Java program uses computing resources that are finite. Most obviously, all objects use some memory to store their images on the heap. (This is true even for objects that declare no instance variables. Each object image must include some kind of pointer to class data, and can include other implementation-dependent information as well.) But objects may also use other finite resources besides memory. For example, some objects may use resources such as file handles, graphics contexts, sockets, and so on. When you design an object, you must make sure it eventually releases any finite resources it uses so the system won't run out of those resources.

Because Java is a garbage-collected language, releasing the memory associated with an object is easy. All you need to do is let go of all references to the object. Because you don't have to worry about explicitly freeing an object, as you must in languages such as C or C++, you needn't worry about corrupting memory by accidentally freeing the same object twice. You do, however, need to make sure you actually release all references to the object. If you don't, you can end up with a memory leak, just like the memory leaks you get in a C++ program when you forget to explicitly free objects. Nevertheless, so long as you release all references to an object, you needn't worry about explicitly "freeing" that memory.

Similarly, you needn't worry about explicitly freeing any constituent objects referenced by the instance variables of an object you no longer need. Releasing all references to the unneeded object will in effect invalidate any constituent object references contained in that object's instance variables. If the now-invalidated references were the only remaining references to those constituent objects, the constituent objects will also be available for garbage collection. Piece of cake, right?

The rules of garbage collection
Although garbage collection does indeed make memory management in Java a lot easier than it is in C or C++, you aren't able to completely forget about memory when you program in Java. To know when you may need to think about memory management in Java, you need to know a bit about the way garbage collection is treated in the Java specifications.

Garbage collection is not mandated
The first thing to know is that no matter how diligently you search through the Java Virtual Machine Specification (JVM Spec), you won't be able to find any sentence that commands, Every JVM must have a garbage collector. The Java Virtual Machine Specification gives VM designers a great deal of leeway in deciding how their implementations will manage memory, including deciding whether or not to even use garbage collection at all. Thus, it is possible that some JVMs (such as a bare-bones smart card JVM) may require that programs executed in each session "fit" in the available memory.

Of course, you can always run out of memory, even on a virtual memory system. The JVM Spec does not state how much memory will be available to a JVM. It just states that whenever a JVM does run out of memory, it should throw an OutOfMemoryError.

Nevertheless, to give Java applications the best chance of executing without running out of memory, most JVMs will use a garbage collector. The garbage collector reclaims the memory occupied by unreferenced objects on the heap, so that memory can be used again by new objects, and usually de-fragments the heap as the program runs.

Garbage collection algorithm is not defined
Another command you won't find in the JVM specification is All JVMs that use garbage collection must use the XXX algorithm. The designers of each JVM get to decide how garbage collection will work in their implementations. Garbage collection algorithm is one area in which JVM vendors can strive to make their implementation better than the competition's. This is significant for you as a Java programmer for the following reason:

Because you don't generally know how garbage collection will be performed inside a JVM, you don't know when any particular object will be garbage collected.

So what? you might ask. The reason you might care when an object is garbage collected has to do with finalizers. (A finalizer is defined as a regular Java instance method named finalize() that returns void and takes no arguments.) The Java specifications make the following promise about finalizers:

Before reclaiming the memory occupied by an object that has a finalizer, the garbage collector will invoke that object's finalizer.

Given that you don't know when objects will be garbage collected, but you do know that finalizable objects will be finalized as they are garbage collected, you can make the following grand deduction:

You don't know when objects will be finalized.

You should imprint this important fact on your brain and forever allow it to inform your Java object designs.

Finalizers to avoid
The central rule of thumb concerning finalizers is this:

Don't design your Java programs such that correctness depends upon "timely" finalization.

In other words, don't write programs that will break if certain objects aren't finalized by certain points in the life of the program's execution. If you write such a program, it may work on some implementations of the JVM but fail on others.

Don't rely on finalizers to release non-memory resources
An example of an object that breaks this rule is one that opens a file in its constructor and closes the file in its finalize() method. Although this design seems neat, tidy, and symmetrical, it potentially creates an insidious bug. A Java program generally will have only a finite number of file handles at its disposal. When all those handles are in use, the program won't be able to open any more files.

A Java program that makes use of such an object (one that opens a file in its constructor and closes it in its finalizer) may work fine on some JVM implementations. On such implementations, finalization would occur often enough to keep a sufficient number of file handles available at all times. But the same program may fail on a different JVM whose garbage collector doesn't finalize often enough to keep the program from running out of file handles. Or, what's even more insidious, the program may work on all JVM implementations now but fail in a mission-critical situation a few years (and release cycles) down the road.

Other finalizer rules of thumb
Two other decisions left to JVM designers are selecting the thread (or threads) that will execute the finalizers and the order in which finalizers will be run. Finalizers may be run in any order -- sequentially by a single thread or concurrently by multiple threads. If your program somehow depends for correctness on finalizers being run in a particular order, or by a particular thread, it may work on some JVM implementations but fail on others.

You should also keep in mind that Java considers an object to be finalized whether the finalize() method returns normally or completes abruptly by throwing an exception. Garbage collectors ignore any exceptions thrown by finalizers and in no way notify the rest of the application that an exception was thrown. If you need to ensure that a particular finalizer fully accomplishes a certain mission, you must write that finalizer so that it handles any exceptions that may arise before the finalizer completes its mission.

One more rule of thumb about finalizers concerns objects left on the heap at the end of the application's lifetime. By default, the garbage collector will not execute the finalizers of any objects left on the heap when the application exits. To change this default, you must invoke the runFinalizersOnExit() method of class Runtime or System, passing true as the single parameter. If your program contains objects whose finalizers must absolutely be invoked before the program exits, be sure to invoke runFinalizersOnExit() somewhere in your program.

So what are finalizers good for?
By now you may be getting the feeling that you don't have much use for finalizers. While it is likely that most of the classes you design won't include a finalizer, there are some reasons to use finalizers.

One reasonable, though rare, application for a finalizer is to free memory allocated by native methods. If an object invokes a native method that allocates memory (perhaps a C function that calls malloc()), that object's finalizer could invoke a native method that frees that memory (calls free()). In this situation, you would be using the finalizer to free up memory allocated on behalf of an object -- memory that will not be automatically reclaimed by the garbage collector.

Another, more common, use of finalizers is to provide a fallback mechanism for releasing non-memory finite resources such as file handles or sockets. As mentioned previously, you shouldn't rely on finalizers for releasing finite non-memory resources. Instead, you should provide a method that will release the resource. But you may also wish to include a finalizer that checks to make sure the resource has already been released, and if it hasn't, that goes ahead and releases it. Such a finalizer guards against (and hopefully will not encourage) sloppy use of your class. If a client programmer forgets to invoke the method you provided to release the resource, the finalizer will release the resource if the object is ever garbage collected. The finalize() method of the LogFileManager class, shown later in this article, is an example of this kind of finalizer.

Avoid finalizer abuse
The existence of finalization produces some interesting complications for JVMs and some interesting possibilities for Java programmers. For a discussion of the impact of finalizers on JVMs, see the sidebar, a short excerpt from chapter 9, "Garbage Collection," of my book, Inside the Java Virtual Machine.

What finalization grants to programmers is power over the life and death of objects. In short, it is possible and completely legal in Java to resurrect objects in finalizers -- to bring them back to life by making them referenced again. (One way a finalizer could accomplish this is by adding a reference to the object being finalized to a static linked list that is still "live.") Although such power may be tempting to exercise because it makes you feel important, the rule of thumb is to resist the temptation to use this power. In general, resurrecting objects in finalizers constitutes finalizer abuse.

The main justification for this rule is that any program that uses resurrection can be redesigned into an easier-to-understand program that doesn't use resurrection. A formal proof of this theorem is left as an exercise to the reader (I've always wanted to say that), but in an informal spirit, consider that object resurrection will be as random and unpredictable as object finalization. As such, a design that uses resurrection will be difficult to figure out by the next maintenance programmer who happens along -- who may not fully understand the idiosyncrasies of garbage collection in Java.

If you feel you simply must bring an object back to life, consider cloning a new copy of the object instead of resurrecting the same old object. The reasoning behind this piece of advice is that garbage collectors in the JVM invoke the finalize() method of an object only once. If that object is resurrected and becomes available for garbage collection a second time, the object's finalize() method will not be invoked again.

Managing non-memory resources
Because heap memory is automatically reclaimed by the garbage collector, the main thing you need to worry about when you design an object's end-of-lifetime behavior is to ensure that finite non-memory resources, such as file handles or sockets, are released. You can take any of three basic approaches when you design an object that needs to use a finite non-memory resource:

1. Obtain and release the resource within each method that needs the resource

2. Provide a method that obtains the resource and another that releases it

3. Obtain the resource at creation time and provide a method that releases it

Approach 1: Obtain and release within each relevant method
As a general rule, the releasing of non-memory finite resources should be done as soon as possible after their use because the resources are, by definition, finite. If possible, you should try to obtain a resource, use it, then release it all within the method that needs the resource.

A log file class: An example of Approach 1
An example of a class where Approach 1 might make sense is a log file class. Such a class takes care of formatting and writing log messages to a file. The name of the log file is passed to the object as it is instantiated. To write a message to the log file, a client invokes a method in the log file class, passing the message as a String. Here's an example:

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.io.IOException;

class LogFile {

 private String fileName;

 LogFile(String fileName) {

 this.fileName = fileName;

 }

 // The writeToFile() method will catch any IOException

 // so that clients aren't forced to catch IOException

 // everywhere they write to the log file. For now,

 // just fail silently. In the future, could put

 // up an informative non-modal dialog box that indicates

 // a logging error occurred. - bv 4/15/98

 void writeToFile(String message) {

 FileOutputStream fos = null;

 PrintWriter pw = null;

 try {

 fos = new FileOutputStream(fileName, true);

 try {

 pw = new PrintWriter(fos, false);

 pw.println("------------------");

 pw.println(message);

 pw.println();

 }

 finally {

 if (pw != null) {

 pw.close();

 }

 }

 }

 catch (IOException e) {

 }

 finally {

 if (fos != null) {

 try {

 fos.close();

 }

 catch (IOException e) {

 }

 }

 }

 }

}

Class LogFile is a simple example of Approach 1. A more production-ready LogFile class might do things such as:

· Insert the date and time each log message was written

· Allow messages to be assigned a level of importance (such as ERROR, INFO, or DEBUG) and enable a level to be set that will prevent unwanted detail (such as DEBUG messages) from making it into the log file

· Manage in some way the size of the log file, i.e., by copying it to a different filename and starting fresh each time the log file achieves a certain size

The main feature of this simple version of class LogFile is that it surrounds each log message with a series of dashes and a blank line.

Using finally to ensure resource release
Note that in the writeToFile() method, the releasing of the resource is done in finally clauses. This is to make sure the finite resource (file handle) is actually released no matter how the code is exited. If an IOException is thrown, the file will be closed.

Pros and cons of Approach 1
The approach to resource management taken by class LogFile (Approach 1 from the above list) helps make your class easy to use, because client programmers don't have to worry about explicitly obtaining or releasing the resource. In both Approach 2 and 3 from the list above client programmers must remember to explicitly invoke a method to release the resource. In addition -- and what can be far more difficult -- client programmers must figure out when their programs no longer need a resource.

A problem with Approach 1 is that obtaining and releasing the resource each time you need it may be too inefficient. Another problem is that, in some situations, you may need to hold onto the resource between invocations of methods that use the resource (such as writeToFile()), so no other object can have access to it. In such cases, one of the other two approaches is preferable.

Approach 2: Offer methods for obtaining and releasing resources
In Approach 2 from the list above, you provide one method for obtaining the resource and another method for releasing it. This approach enables the same class instance to obtain and release a resource multiple times. Here's an example:

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.io.IOException;

class LogFileManager {

 private FileOutputStream fos;

 private PrintWriter pw;

 private boolean logFileOpen = false;

 LogFileManager() {

 }

 LogFileManager(String fileName) throws IOException {

 openLogFile(fileName);

 }

 void openLogFile(String fileName) throws IOException {

 if (!logFileOpen) {

 try {

 fos = new FileOutputStream(fileName, true);

 pw = new PrintWriter(fos, false);

 logFileOpen = true;

 }

 catch (IOException e) {

 if (pw != null) {

 pw.close();

 pw = null;

 }

 if (fos != null) {

 fos.close();

 fos = null;

 }

 throw e;

 }

 }

 }

 void closeLogFile() throws IOException {

 if (logFileOpen) {

 pw.close();

 pw = null;

 fos.close();

 fos = null;

 logFileOpen = false;

 }

 }

 boolean isOpen() {

 return logFileOpen;

 }

 void writeToFile(String message) throws IOException {

 pw.println("------------------");

 pw.println(message);

 pw.println();

 }

 protected void finalize() throws Throwable {

 if (logFileOpen) {

 try {

 closeLogFile();

 }

 finally {

 super.finalize();

 }

 }

 }

}

In this example, class LogFileManager declares methods openLogFile() and closeLogFile(). Given this design, you could write to multiple log files with one instance of this class. This design also allows a client to monopolize the resource for as long as it wants. A client can write several consecutive messages to the log file without fear that another thread or process will slip in any intervening messages. Once a client successfully opens a log file with openLogFile(), that log file belongs exclusively to that client until the client invokes closeLogFile().

Note that LogFileManager uses a finalizer as a fallback in case a client forgets to invoke closeLogFile(). As mentioned earlier in this article, this is one of the more common uses of finalizers.

Note also that after invoking closeLogFile(), LogFileManager's finalizer invokes super.finalize(). Invoking superclass finalizers is good practice in any finalizer, even in cases (such as this) where no superclass exists other than Object. The JVM does not automatically invoke superclass finalizers, so you must do so explicitly. If someone ever inserts a class that declares a finalizer between LogFileManager and Object in the inheritance hierarchy, the new object's finalizer will already be invoked by LogFileManager's existing finalizer.

Making super.finalize() the last action of a finalizer ensures that subclasses will be finalized before superclasses. Although in most cases the placement of super.finalize() won't matter, in some rare cases, a subclass finalizer may require that its superclass be as yet unfinalized. So, as a general rule of thumb, place super.finalize() last.

Approach 3: Claim resource on creation, offer method for release
In the last approach, Approach 3 from the above list, the object obtains the resource upon creation and declares a method that releases the resource. Here's an example:

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.io.IOException;

class LogFileTransaction {

 private FileOutputStream fos;

 private PrintWriter pw;

 private boolean logFileOpen = false;

 LogFileTransaction(String fileName) throws IOException {

 try {

 fos = new FileOutputStream(fileName, true);

 pw = new PrintWriter(fos, false);

 logFileOpen = true;

 }

 catch (IOException e) {

 if (pw != null) {

 pw.close();

 pw = null;

 }

 if (fos != null) {

 fos.close();

 fos = null;

 }

 throw e;

 }

 }

 void closeLogFile() throws IOException {

 if (logFileOpen) {

 pw.close();

 pw = null;

 fos.close();

 fos = null;

 logFileOpen = false;

 }

 }

 boolean isOpen() {

 return logFileOpen;

 }

 void writeToFile(String message) throws IOException {

 pw.println("------------------");

 pw.println(message);

 pw.println();

 }

 protected void finalize() throws Throwable {

 if (logFileOpen) {

 try {

 closeLogFile();

 }

 finally {

 super.finalize();

 }

 }

 }

}

This class is called LogFileTransaction because every time a client wants to write a chunk of messages to the log file (and then let others use that log file), it must create a new LogFileTransaction. Thus, this class models one transaction between the client and the log file.

One interesting thing to note about Approach 3 is that this is the approach used by the FileOutputStream and PrintWriter classes used by all three example log file classes. In fact, if you look through the java.io package, you'll find that almost all of the java.io classes that deal with file handles use Approach 3. (The two exceptions are PipedReader and PipedWriter, which use Approach 2.)

Behind the Scenes

The <init> method is not actually part of the Java language. Rather, it is something the Java virtual machine expects to see in a Java class file. This distinction is significant because the Java language does not depend on the class file. Java source can be compiled into other binary formats, including native executables. A Java compiler that translates Java language source into some other binary format need not generate a method named <init>, so long as objects are initialized in the proper way at the proper time. The Java Language Specification (JLS) details the order of initialization and when it occurs, but doesn't say how it is actually accomplished. Still, understanding how initialization works inside class files can help you understand the order of initialization in the language.

Special Treatment for Primitive Constants

The Java compiler resolves references to fields that are both static and final, and initialized by a compile-time constant expression, to a copy of the constant value. An example of two constant fields are shown below as part of class CoffeeCup. The maxCapacity field is initialized by a compile- time constant, but the currentCoffeeAmount field is not. References to the maxCapacity field are compiled to refer directly to a constant pool entry with the constant value 250. The maxCapacity field is not initialized by the <clinit> method. However, because the constant value of currentCoffeeAmount is not known at compile time, it must be initialized by <clinit>. The Java Virtual Machine will execute the <clinit> method during the initialization phase of the class, and the <clinit> method will invoke Math.random, multiply the result by 250, and assign currentCoffeeAmount its initial value, which will thereafter remain constant.

class CoffeeCup {

static final int maxCapacity = 250; // milliliters

static final int currentCoffeeAmount =

 (int) (Math.random() * 250d);

}

The use or assignment of a static, final field is not an active use of a class, because such fields are not initialized via the <clinit> method. A constant field is a class variable that is declared final as well as static, and is initialized with a compile-time constant expression. Such fields are resolved to constant expressions To initialize a class, the Java Virtual Machine executes the class's <clinit> method, if it has one. A class's superclass must be initialized before the class is initialized, so the Java Virtual Machine will invoke the <clinit> methods of the class's superclass if it hasn't yet been invoked. The code of a <clinit> method does not explicitly invoke a superclass's <clinit> method, therefore the Java Virtual Machine must make certain the <clinit> methods of superclasses have been executed before it invokes the <clinit> method of a class.

To initialize an interface, the Java Virtual Machine executes the interface's <clinit> method, if it has one, just as it does for classes. An interface may have a <clinit> method because interfaces can contain constants. In interfaces, constants are public, final, static variables. The variables must have an initialization expression, which is the interface version of a class variable initializer. Interfaces cannot have static initialization blocks. As with classes, only initializers that require evaluation of expressions that are not compile-time constants will end up as code in the <clinit> method. Therefore, if an interface has at least one constant that is initialized by an expression that is not a compile time constant, that interface will have a <clinit> method. Initialization of an interface does not require prior initialization of its superinterfaces.

[SHOW THAT THESE ARE PUT INTO SEPARATE CLASS FILES AND THAT THEY ARE USED BY THE CASE STATEMENTS OF SWITCHES, AND TO DO CONDITIONAL COMPILATION.]

Objects and Java by Bill Venners
Chapter 5:
Packages and Access Specifiers
Objects and Java | Contents | Previous | Next
The process of software design is largely a process of organizing. The previous three chapters explored the object-oriented ways you can organize a Java program. This chapter discusses an additional way to organize Java programs that has nothing to do with object-orientation: packages. In Java, a package is a library of types (classes and interfaces). This chapter describes four ways to think about packages and shows how to make use of packages in your Java programs.

Once you know about packages, you can understand all the access levels (such as private, protected, etc.) available to types and their fields and methods. This chapter compares all the access levels and gives advice on how to use them.

Avoiding Name Conflicts

The first way to think about packages is as a tool to help you reduce the likelyhood of name conflicts in your programs. When you design a Java program, you model the problem domain by identifying and defining types and assigning each a name. Types refer to each other by name, so each type name you assign must be unique. If you design a large program, or incorporate types named and defined by others, you may encounter name conflicts. To address the problem of name conflicts, you use packages.

Packages effectively lengthen type names, making the names more distinctive. In a Java program, every type belongs to some package. A package is a set of types grouped together under a common package name. Each type has a simple name, and each package has a package name. The name of the package containing a type, plus a dot, plus the type's simple name is the type's fully qualified name. For example, if you have a class named CoffeeCup in a package named dishes, "dishes.CoffeeCup" is its fully qualified name. ("dishes" is its package name; "CoffeeCup" its simple name.) The fully qualified name of a type, which is longer and more distinctive than its simple name, enables like-named types from different packages to be used in the same program.

If you discard the package name from a type's fully qualified name, you get the type's simple name. Therefore, the simple name of dishes.CoffeeCup is, simply, CoffeeCup. To use CoffeeCup, types in the same package can just use its simple name. Types in other packages, however, must also identify dishes, the package containing CoffeeCup, as well as its simple name. This ensures that a different CoffeeCup class defined in a different package will not conflict with dishes.CoffeeCup.

To help make type names even more distinctive, you can organize your packages hierarchically. Packages can contain not only types, but other packages as well. The entities contained in a package--its classes, interfaces, and sub-packages--are called the package's members.

The fully qualified name of a class nestled deep down inside several packages is the name of each package and the class's simple name, all separated by dots. For instance, if you placed CoffeeCup inside package dishes and placed dishes inside package vcafe (for virtual cafe), the fully qualified name of CoffeeCup would be "vcafe.dishes.CoffeeCup." The greater the number of nested packages in which you place a class, the more dot-separated names the class will have in its fully qualified name, and the more distinctive that fully qualified name will be.

Packages help you guard against the potential of name conflicts in your Java programs. Instead of worrying that the simple name of every type you need to use in a program is unique, you need only worry that every fully qualified name is unique.

One other way to deal with name conflicts involves class loaders and the multiple name spaces offered by the JVM. This will be discussed in Chapter 20.

Hierarchical Organization

A second way to think about packages is as a tool to help you organize the types you create for your program. With packages, you can organize a program into logically related groups of types, and organize the groups hierarchically.

The package is an organizational tool independent of any object-oriented organization of a program. For example, all the types in a particular family of types could belong to the same package, or be spread out across several packages. A class in one package can subclass a class in another package. The only requirement is that the subclass must specify the name of the package containing its superclass as well as the superclass's simple name. When you organize your types into packages, what you are actually organizing is type names.

Although you can grant special privileges between types that belong to the same package, a topic that will be discussed later in this chapter, you can't grant special privileges between a types in a package and types in a sub-package. To the types defined in a parent package, a sub-package is just like any other package. From the perspective of a Java compiler or the Java Virtual Machine, nested packages are not really seen as a hierarchy. They are just seen as a set of independent packages, each with a unique name. Packages are seen as a conceptual hierarchy only from the perspective of developers, who can use the hierarchy to express conceptual relationships between different groups of types.

Often, Java compilers and Java Virtual Machines expect the source files or class files contained in a hierarchy of packages to be located in a corresponding directory hierarchy, in which each directory takes the name of a package. Here, the compiler or Java Virtual Machine is using the package hierarchy as a way to locate files on a disk. The actual manner in which a particular compiler or Java Virtual Machine finds class files is a detail specific to each individual development environment or Java Platform implementation. The process of using directory hierarchies that map to package hierarchies to locate class files will be discussed further later in this chapter.

Libraries

A third way to think about packages is simply as libraries. Any Java program you write will make use of libraries developed by others and made available to your program as packages. Any program will at least use the run-time libraries of the Java API, some of which are java.lang, java.io, java.util, java.net, java.awt, and java.applet. If, rather than developing a complete program, you wish to develop class library that other developers can use in their programs, your end-product will be a package.

Hiding the Implementation

The fourth way to think about packages is as a tool that can help you separate interface from implementation. You can grant special access privileges between types within the same package, and you can declare entire types to be accessible only to other types within the same package. The full details of how to do this will be given later in this chapter as part of a discussion of Java's access levels.

Recommended Package Naming Convention

Because the packages used by a program can come from many sources, it is important that you name your packages in a way that won't conflict with the names of packages developed by others. Of course, you don't know what packages might be developed by other programmers, nor how they will name those packages. This points out that the mechanism of packages doesn't actually solve the name conflict problem, it only reduces the likelihood of an actual conflict. Just because you go to the trouble of enclosing your CoffeeCup class in two nested packages--vcafe and dishes--doesn't mean someone else won't inadvertently do the same.

To combat the potential of name conflicts between types developed by different software vendors, Java comes with a recommended naming convention for packages. If everyone would follow the recommended convention when naming their packages, harmony would cover the Earth. Java does not, however, enforce any naming convention, so name conflicts are still possible. It is up to you to do your part in preventing naming conflicts within Java programs.

The official recommendation on package naming is to use the reversed internet domain name of your company or organization as the first part of your package names. Because internet domain names are globally unique, this improves the chances your package names will be globally unique. If your company's domain name were artima.com, for instance, you would start any package name with "com.artima." The fully qualified name of CoffeeCup would become com.artima.vcafe.dishes.CoffeeCup.

All the packages you create must be given a name that will be unique across the scope in which they will be visible. If they will be visible only locally, you needn't use the recommended naming convention. If you are certain your package names are not going to be visible on a global scale, but will remain inside, say, your division, you can devise and follow a division-wide package naming scheme. For any other package, however, following the recommended naming scheme makes you a good Java citizen.

The Package Declaration

As you write a Java program, you must place every class you define into a package, and give each package a unique name. You place a class into a package by including a package declaration at the top of the source file. A package declaration is just the keyword package followed by the package name and a semicolon. The package declaration must appear in the source file before any class or interface declaration, and each source file can contain only one package declaration. For example, you would place CoffeeCup into the package com.artima.vcafe.dishes as follows:

// In Source Packet in file

// packages/ex1/com/artima/vcafe/dishes/CoffeeCup.java

package com.artima.vcafe.dishes;

public class CoffeeCup {

 public static final int MAX_SHORT_ML = 237;

 public static final int MAX_TALL_ML = 355;

 public static final int MAX_GRANDE_ML = 473;

 public void add(int amountOfCoffee) {

 System.out.println("Adding " + amountOfCoffee

 + " ml of coffee.");

 }

 //...

}

The package name in the example above, com.artima.vcafe.dishes, indicates that dishes is a sub-package of vcafe, which is a sub- package of artima, which is a sub-package of com. You needn't have any source file in your program that declares the com package, the com.artima package, or the com.artima.vcafe package. The package statement in the example above is enough to establish the existence of all four packages: com, artima, vcafe, and dishes.

On the other hand, if you do have source files that declare classes as members of, say, the com.artima.vcafe package, those classes have no special relation to the classes of com.artima.vcafe.dishes, as far as the Java language is concerned. To the Java language, com.artima.vcafe and com.artima.vcafe.dishes are just two different packages with two different names. To you, the programmer, however, the hierarchical relationship between the two packages would have meaning: it would express the conceptual relationship between two different groups of types. [bv: is this redundant with something that came before?]

Location of Source and Class Files

Although the location of source and class files for package members at both compile-time and run- time depends on your particular development and runtime environments, many environments require that you create a hierarchy of directories that correspond to the hierarchy of packages. If you were to work on such a system, you would likely have to put the source and class file for the CoffeeCup class defined above in a directory named ".../com/artima/vcafe/dishes" or "...\com\artima\vcafe\dishes", depending on your preferred direction of slash.

To give one concrete example, imagine you are using Sun's JDK 1.1.1 to run a Java program on Microsoft Windows95. You would set an environment variable, CLASSPATH, to indicate to the Java Virtual Machine where it should look for class files. If your CLASSPATH is set to ".;C:\MYLIB;C:\JDK1.1.1\LIB\CLASSES.ZIP", then the compiler and the Java Virtual Machine would look in three places for the classes needed by your program:

1. the current directory, "."

2. a directory named "C:\MYLIB"

3. a zip file named "C:\JDK1.1.1\LIB\CLASSES.ZIP"

If you use com.artima.vcafe.dishes.CoffeeCup in the program, the Java Virtual Machine would first look for a directory, relative to the current directory, named .\com\artima\vcafe\dishes. (It would look here first because "." is the first directory in the CLASSPATH.) If it finds a CoffeeCup.class in that directory, it would load it. If this directory didn't exist, or there was no CoffeeCup.class in that directory, the Java Virtual Machine would look for a directory named C:\MYLIB\com\artima\vcafe\dishes. If it finds a CoffeeCup.class here, it would load it. Otherwise it would look inside the zip file for a com\artima\vcafe\dishes\CoffeeCup.class. It is unlikely that CoffeeCup.class it is in the zip file, because this is where all the runtime libraries of the Java Platform are kept in JDK 1.1.1.

As it searches through the directories and zip files listed in the class path, the Java Virtual Machine loads the first class file that it encounters with a name that matches the class name, CoffeeCup.class, and a relative directory that matches the package name, com\artima\vcafe\dishes. Once it has loaded the class file, the virtual machine checks the binary data to verify that the class is indeed com.artima.vcafe.dishes.CoffeeCup.

This Windows95 and JDK 1.1.1 example was just one possible way a Java Platform implementation could locate class files. To find out how your particular Java Platform or Java development environment locates class files, you must consult its documentation.

The Unnamed Package

In every Java program there can be one unnamed package, which is simply a package with no name. In a sense, the unnamed package really does have a name, just a very short one, which distinguishes it from the other packages in your program. To place a class into the unnamed package, just define the class in a source file with no package statement. All types declared in this book prior to this chapter were in the unnamed package.

You should not use the unnamed package for a general-purpose library, because it is probably the most common package name used by Java programmers. (In addition, types declared in the unnamed package are accessible only to each other. In other words, a type in a named package can't access a type in the unnamed package.) In general, you will want to partition large Java programs into named packages to better organize your program and to take advantage of the implementation-hiding capabilities of packages. The unnamed package is convenient and appropriate for the core types that make up an applet or application.

The Import Statement

In a Java source file, you have two ways to refer to a class or interface defined in another package. You can either use the fully qualified name of the class everywhere you refer to it, or you can import that class's fully qualified name into your source file and then just use the simple name everywhere. Importing a type into a source file means making the compiler recognize the type in that source file by its simple name.

You can't import packages, just types. Import doesn't include any code, like #include of C or C++. It only means that you can use the simple name of a type instead of the fully qualified names.

As an example, imagine you are writing code in the unnamed package that takes advantage of the CoffeeCup class defined in package com.artima.vcafe.dishes. One approach is to just use the fully qualified name of CoffeeCup everywhere, as in:

// In Source Packet in file packages/ex1/Example1a.java

// Deep in the heart of the unnamed package...

class Example1a {

 public static void main(String[] args) {

 com.artima.vcafe.dishes.CoffeeCup cup =

 new com.artima.vcafe.dishes.CoffeeCup();

 cup.add(com.artima.vcafe.dishes.CoffeeCup.MAX_SHORT_ML);

 }

}

This approach is reasonable if the source file has only a few references to a class, but otherwise can make your code tiresome for you to type and others to read. The alternative is to import the class into the source file and then refer to the class by its simple name. Here's an example:

// In Source Packet in file packages/ex1/Example1b.java

// At the top of a file in the unnamed package, import the class.

import com.artima.vcafe.dishes.CoffeeCup;

// Everywhere else in the file, just use the simple name.

class Example1b {

 public static void main(String[] args) {

 CoffeeCup cup = new CoffeeCup();

 cup.add(CoffeeCup.MAX_TALL_ML);

 }

}

If you find yourself using several types from a single package, you can import all their names from a package into your source file with one import statement by using an asterisk in place of the class or interface name. (Actually, the asterisk only imports classes and interfaces declared as public, a feature that will be described in detail later in this chapter.):

// In Source Packet in file packages/ex1/Example1c.java

// Import all public types from the com.artima.vcafe.dishes package.

import com.artima.vcafe.dishes.*;

// Everywhere else in the file, just use the simple names.

class Example1c {

 public static void main(String[] args) {

 CoffeeCup cup = new CoffeeCup();

 cup.add(CoffeeCup.MAX_GRANDE_ML);

 }

}

Import statements such as the ones shown in the examples above reduce the amount of typing required to use types from other packages, but they also make it possible for names to conflict again. For instance, if you imported two different CoffeeCup classes from two different packages, just referring to "CoffeeCup" would be ambiguous. The compiler wouldn't know which CoffeeCup you were talking about. In this case you would need to explicitly indicate which CoffeeCup you meant by prefacing the simple name with the package name. In other words, even though you imported both CoffeeCup classes, you'll still have to use the fully qualified names to resolve the ambiguity.

As an example, imagine you imported all the public types from two packages, com.artima.vcafe.dishes and com.artima.pencilholders, both of which contained a CoffeeCup class. To use either version of CoffeeCup you would have to use its fully qualified name, as shown below:

// In Source Packet in file

// packages/ex1/com/artima/pencilholders/CoffeeCup.java

package com.artima.pencilholders;

public class CoffeeCup {

 public void add(int amountOfPencils) {

 System.out.println("Adding " + amountOfPencils

 + " pencils.");

 }

 //...

}

// In Source Packet in file packages/ex1/Example1d.java

// All types defined in both packages are

// imported, yielding two different classes named "CoffeeCup."

import com.artima.pencilholders.*;

import com.artima.vcafe.dishes.*;

class Example1d {

 public static void main(String[] args) {

 // Somewhere later in the code, you wish to instantiate a

 // new CoffeeCup from the com.artima.vcafe.dishes package:

 com.artima.vcafe.dishes.CoffeeCup myCoffee =

 new com.artima.vcafe.dishes.CoffeeCup();

 // While you sip your coffee with the cup from the virtual

 // cafe, you also want a place to store your spare pencils.

 // So, you create a new CoffeeCup from the

 // com.artima.pencilholders package. This is a different

 // class, but one that shares the same simple name as the

 // previous "CoffeeCup."

 com.artima.pencilholders.CoffeeCup myPencilHolder =

 new com.artima.pencilholders.CoffeeCup();

 myCoffee.add(com.artima.vcafe.dishes.CoffeeCup.MAX_SHORT_ML);

 myPencilHolder.add(10);

 }

}

The code as shown above compiles fine, because each time you use a CoffeeCup you clearly indicate which CoffeeCup you want. You have indeed accomplished your goal of using two different CoffeeCup classes in the same source file, yet you have once again cluttered the code with long package names.

Fortunately, one other approach exists that may help you reduce some of the clutter. If you only import one of the packages containing a CoffeeCup class, you could use the simple name when referring to that CoffeeCup. As before, you'd have to use the fully qualified name when referring to the other CoffeeCup. Rewriting the previous example using this approach, yields the following code:

// In Source Packet in file packages/ex1/Example1e.java

// Import all types defined in com.artima.vcafe.dishes, but

// don't import anything from com.artima.pencilholders.

import com.artima.vcafe.dishes.*;

class Example1e {

 public static void main(String[] args) {

 // Somewhere later in the code, you wish to instantiate a

 // new CoffeeCup from the com.artima.vcafe.dishes package.

 // Here you can just use the simple name:

 CoffeeCup myCoffee = new CoffeeCup();

 // To create a new CoffeeCup from the

 // com.artima.pencilholders package, you must once again

 // use the fully qualified name:

 com.artima.pencilholders.CoffeeCup myPencilHolder =

 new com.artima.pencilholders.CoffeeCup();

 myCoffee.add(CoffeeCup.MAX_TALL_ML);

 myPencilHolder.add(15);

 }

}

You might be wondering if you can just import all the members of the com.artima package and just use vcafe.dishes.CoffeeCup and pencilholders.CoffeeCup to distinguish between the two classes of coffee cup. Well, you can't. The import statement only imports types, not packages. The statement "import com.artima.*;" imports all the types defined in that package, but doesn't import any sub- packages defined in that package. The statement "import com.artima;" doesn't compile, because you are trying to import a package and not a class or interface. Another statement that doesn't compile is "import com.artima.*.dishes;". The * must always go at the end, as it only matches type names, not package names.

There is one exception to the rule that you must import types from other packages before you can use their simple names: java.lang.*. The public types defined in the standard run- time library java.lang are automatically imported into every Java source file. This package contains classes, such as String, Thread, and Object, that are essential to the inner workings of Java programs. To make use of the types contained in the packages from Java's standard run-time library other than java.lang, you must either import the packages or use fully qualified names, just like any other package.

Import statements are provided as a convenience for the programmer. Because of import statements, you don't have to always type long and tedious fully qualified names. The Java compiler can work out the fully qualified names of types given the import statements and the simple names in a source file. When the compiler generates class files, it discards any import statements in the source file. In class files, all types are identified by their fully qualified names. In your programs, you can choose to use import statements or fully qualified names, whatever you think will maximize the readability of your code.

As mentioned earlier in this chapter, an import statement does not dynamically include code from a different file, as #include does for C and C++ programs. Import is just about names.

Access Levels for Types

One of the most useful features of Java packages is the ability to grant access to classes, interfaces, methods, or fields exclusively to other members of the same package. This feature gives the package an internal implementation and an external interface. It provides the usual advantages of a hidden internal implementation: robustness and ease of modification. The robustness arises from the inability of types declared in other packages to incorrectly manipulate the internal implementation of the package. Types in other packages must go through the external interface of the package, and the package maintains control of its internal implementation. Ease of modification comes from the ability to change the internal implementation of the package without affecting the code of other packages, which is tied only to the external interface.

The first step you can take to hide the internal implementation of a package is to declare as public only those types that are needed by other packages. When you declare a class or interface, it is by definition contained in a package. If you want a class or interface to be accessible to types declared in other packages, you must declare it public. If you do not declare it public, it will only be accessible to types in the same package. Therefore, you can denote some types (the public ones) as part of the external interface of the package. The other types (the ones that aren't public) are part of the internal implementation of the package. An example of both kinds of class declarations is shown below:

// In Source Packet in file

// packages/ex2/com/artima/vcafe/dishes/Cup.java

package com.artima.vcafe.dishes;

// Class Cup is part of the internal implementation of

// package com.artima.vcafe.dishes.

class Cup {

 public void add(int amountOfCoffee) {

 System.out.println("Adding to a Cup.");

 }

 //...

}

// In Source Packet in file

// packages/ex2/com/artima/vcafe/dishes/CoffeeCup.java

package com.artima.vcafe.dishes;

// Class CoffeeCup is part of the external interface of

// package com.artima.vcafe.dishes.

public class CoffeeCup extends Cup {

 public static final int MAX_SHORT_ML = 237;

 public static final int MAX_TALL_ML = 355;

 public static final int MAX_GRANDE_ML = 473;

 //...

}

In the code shown above, class CoffeeCup is declared public, but class Cup is not. Consequently, CoffeeCup is accessible everywhere, but Cup is accessible only in the com.artima.vcafe.dishes package.

Package access is the default for types. Unless you explicitly modify your class declaration with the keyword public, you'll get "package access," as this default level of access is called. You cannot declare a class with the access specifiers protected or private. It must either be declared with the keyword public or have no access specifier.

As the example above demonstrates, you can declare a superclass with package access and still give its subclass public access. Given the code above, a type in another package could not subclass Cup, but could subclass CoffeeCup. If you want types in other packages to be able to use CoffeeCup but not subclass it, you must also declare it final, as shown below:

// In Source Packet in file

// packages/ex3/com/artima/vcafe/dishes/Cup.java

package com.artima.vcafe.dishes;

// Class Cup is part of the internal implementation of

// package com.artima.vcafe.dishes.

class Cup {

 public void add(int amountOfCoffee) {

 System.out.println("Adding to a Cup.");

 }

 //...

}

// In Source Packet in file

// packages/ex3/com/artima/vcafe/dishes/CoffeeCup.java

package com.artima.vcafe.dishes;

// Class CoffeeCup is part of the external interface of

// package com.artima.vcafe.dishes. It can be used, but

// not subclassed, by classes in other packages.

public final class CoffeeCup extends Cup {

 public static final int MAX_SHORT_ML = 237;

 public static final int MAX_TALL_ML = 355;

 public static final int MAX_GRANDE_ML = 473;

 //...

}

When you fill a package with types, you should separate the types that represent the implementation of the package from those that represent the interface. Only those types that are needed by other packages should be declared public. A good rule of thumb is to leave any class or interface with its default package access, unless you're sure it should be public.

Declaring a public class as final will prevent classes in other packages from declaring a subclass, but it will also restrict any other class in its own package from declaring a subclass. This is a severe restriction on the use of a class. Often you will want clients of your package to be able to subclass its public classes. That is one of the fundamental ways to reuse code in object-oriented programming. The rule of thumb here is to make classes final only when you have a good reason.

One possible reason to make a class final is to ensure your package will always behave as expected. For example, imagine you write a package that depends for correctness on the proper behavior of a certain class of objects, say the CoffeeCup class, defined in your package. You make class CoffeeCup public so that clients can create instances of it to pass to the methods of other classes defined in your package. If your package requires that the CoffeeCup objects passed to it behave in a certain way, your package might break if a client declares their own subclass of class CoffeeCup, say LeakyCup, and overrides the methods that your package depends upon for correctness. You can avoid this by declaring every method in CoffeeCup as final, or by declaring the entire CoffeeCup class final.

In the examples in this book, each type is declared in its own source file. The name of the source file is the name of the type plus the extension .java. For example, class CoffeeCup is declared in file CoffeeCup.java, and interface Washable is declared in file Washable.java. Although placing each type in a separate file named after the type is in general a good practice, because it makes the type's source easier for you and other developers to locate, it is not always required. Java compilers do require that public types be declared in a file that bears the name of the public types. They do not, however, require this of non-public types. You can place as many non-public types in the same file as you wish, and the file can have whatever name you wish. If a file does contain a public type, however, the file must be given the name of the public type. Because you can only have one package statement in each source file, all types declared in the same source file are members of the same package.

Access Levels for Class Members

In general, within any class you design you will want to hide the implementation. Given that packages can (and should) be used to group related types, however, you may want to expose some fields and methods to other classes in the same package while keeping them hidden from classes outside the package. Java provides access control modifiers to support this intermediate level of implementation hiding. By applying proper modifiers on a class's fields and methods, you can hide the class's implementation from classes outside the package while exposing the implementation to classes inside the package.

Java gives you three access control modifiers--private, protected, and public--to apply to the fields and methods of public classes, but you can obtain four distinct levels of access from their use. Three of the levels (private, protected, and public access) are denoted by the use of one of the three access control modifiers. The fourth level (package access) is the default and is indicated by the lack of any access control modifier. Here is a description of each of the four access levels available to members of public classes, in order from least to most accessible:

1. private access (denoted by the keyword private) - a field or method accessible only to the class which defines it.

2. package access (denoted by no access control modifier keywords) - a field or method accessible to any type in the same package.

3. protected access (denoted by the keyword protected) - a field or method accessible to any type in the same package, and to subclasses in any package.

4. public access (denoted by the keyword public) - a field or method accessible to any type in any package.

There is no way to grant special access to types in sub-packages. This is why the Java compiler and the Java Virtual Machine view a package and its sub-packages as independent packages with no special privileges between them. Thus, the relationship between types in hierarchically related packages, such as com.artima.vcafe and com.artima.vcafe.dishes, is only conceptual. Package hierarchies help you organize your types, but don't allow any special access privileges between the two groups of types.

A graphical depiction of the effect of each kind of access control modifier is shown in Figures 7-1 through 7-4. In these figures, the ovals represent classes, the arrows represent inheritance, the rectangles represent packages. Each figure indicates which classes will be able to access a member of class Cup with one of the five access levels. Classes that can access the member in Cup are shown in solid gray; classes that can't are shown with a checkerboard pattern.

[image: image1.png]the unnamed packege COM artimaveafe.dishes

CoffeeCiip

D Has access
@D Doss not have access

Figure 5-1. Private access to a member of Cup.

[image: image2.png]the unnamed package COM. artima. vcafe. dishes

~|

€D Does not have access

Figure 5-2. Package access to a member of Cup.

[image: image3.png]the unnamed package COM. artima. vcafe. dishes

~|

€D Does not have access

Figure 5-3. Protected access to a member of Cup.

[image: image4.png]the unnamed packege COM artimaveafe.dishes

CoffeeCup

D Has access
@D Doss not have access

Figure 5-4. Public access to a member of Cup.

An example of each kind of access control modifier is shown in the following version of class Coffee:

// In Source Packet in file

// packages/ex4/com/artima/vcafe/beverages/Coffee.java

package com.artima.vcafe.beverages;

public class Coffee {

 // PRIVATE ACCESS

 // Accessible to only class Coffee itself.

 private int temperature;

 // PACKAGE ACCESS

 // Accessible to Coffee and to the other classes and

 // interfaces of package com.artima.vcafe.beverages.

 void changeTemperature(int delta) {

 temperature += delta;

 }

 // PROTECTED ACCESS

 // Accessible to Coffee, to its subclasses (no matter what

 // package the subclasses are defined in), and to the other

 // types of package com.artima.vcafe.beverages, including

 // non-subclasses.

 protected static final int bestTemperature = 50;

 // PUBLIC ACCESS

 // Accessible to the entire universe.

 public void setTemperature(int temperature) {

 this.temperature = temperature;

 }

 public int getTemperature() {

 return temperature;

 }

}

The True Meaning of private and protected
The private keyword grants exclusive access not to an object, but to a class. An object can access its private members, but so can any other object of the same class. For example, if a CoffeeCup object has a reference to another CoffeeCup object, the first CoffeeCup can access the second CoffeeCup's private members through that reference. This is true of both private variables and private methods, whether they are static or not.

Inside a package, the true meaning of the protected keyword is quite simple. To classes in the same package, protected access looks just like package access. Any class can access any protected member of another class declared in the same package.

When you have subclasses in other packages, however, the true meaning of protected becomes more complex. Take a look at the inheritance hierarchy shown in Figure 5-5. In this hierarchy, class Cup, which is declared in the com.artima.vcafe.dishes package, declares a protected instance method named getSize(). This method is accessible to any subclasses declared anywhere, including those shown declared in package com.artima.other. Any objects whose class descends from Cup--instances of class CoffeeCup, CoffeeMug, EspressoCup, or TeaCup-- can invoke getSize() on themselves. Whether they can invoke getSize() on a reference to another object, however, depends upon where that other object sits in the inheritance hierarchy.

[image: image5.png]COM artima veafe.dishes

protected int getSize():
protected static int
getCupsIntse () ;

COM artima.other

CoffeeCup

CoffeeMug (EspressoCup

Figure 5-5. The true meaning of protected.

If a protected instance variable or instance method is accessible to a class, that class can access the protected member through a reference only if the reference type is the class or one of its subclasses. For example, for code in the CoffeeCup class to invoke getSize() on a reference to another object, that reference must be of type CoffeeCup or one of its subclasses. A CoffeeCup object could therefore invoke getSize() on a CoffeeCup reference, a CoffeeMug reference, or an EspressoCup reference. A CoffeeCup object could not, however, invoke getSize() on a Cup reference or a TeaCup reference.

If class has a protected variable or method that is static, the rules are different. Take as an example the protected static method getCupsInUse() declared in class Cup as shown in Figure 5-5. Any code in a subclass of Cup can access a getCupsInUse() by invoking it on itself or invoking it on a reference of type Cup or any of its subclasses. Code in the EspressoCup class could invoke getCupsInUse() on itself or on a reference of type Cup, CoffeeCup, CoffeeMug, EspressoCup, or TeaCup.

Rules of Thumb for Class Member Access Levels

The most important rule of thumb concerning the use of access control modifiers is to keep data private unless you have a good reason not to. Keeping data private is the best way to maximize the robustness and ease of modification of your classes. If you keep data private, other classes can access a class's fields only through its methods. This enables the designer of a class to keep control over the manner in which the class's fields are manipulated. If fields are not private, other classes can change the fields directly, possibly in unpredictable and improper ways. Keeping data private also enables a class designer to more easily change the algorithms and data structures used by a class. Given that other classes can only manipulate a class's private fields indirectly, through the class's methods, other classes will depend only upon the external interface to the private fields provided by the methods. You can change the private fields of a class and modify the code of the methods that manipulate those fields. As long as you don't alter the signature and return type of the methods, the other classes that depended on the previous version of the class will still link properly. Making fields private is the fundamental technique for hiding the implementation of Java classes.

As mentioned in an earlier chapter, one other reason to make data private is because you synchronize access to data by multiple threads through methods. This justification for keeping data private will be discussed in Chapter 17.

As a general rule, the only good non-private field is a final one. Given that final fields cannot be changed after they are initialized, non-private final fields do not run the risk of improper manipulation by other classes. Other classes can use the field, but not change it.

A common use of non-private final fields is to define names to represent a set of valid values that may be passed to (or returned from) a method. As mentioned in Chapter 5, such fields are called constants and are declared static as well as non-private and final. A Java programmer will create constants in this manner in situations where a C++ programmer would have used an enumerated type or declared a "const" member variable.

Rules of thumb such as the ones outlined above are called rules of thumb for a reason: They are not absolute laws. Java allows you to declare fields in classes with any kind of access level, and you may very well encounter situations in which declaring a field private is too restrictive. One potential justification for non-private fields is simple trust. In some situations you may have absolute trust of certain other classes. For example, perhaps you are designing a small set of types that must work together closely to solve a particular problem. It may make sense to put all of these types in their own package, and allow them direct access to some of each other's fields. Although this would create interdependencies between the internal implementations of the classes, you may deem the level of interdependency to be acceptable. If later you change the internal implementation of one of the classes, you'll have to update the other classes that relied on the original implementation. As long as you don't grant access to the fields to classes outside the package, any repercussions of the implementation change will remain inside the package.

Nevertheless, the general rule of thumb in designing packages is to treat the types that share the same package with as much suspicion as types from different packages. If you don't trust classes from other packages to directly manipulate your class's fields, neither should you let classes from the same package directly manipulate them. Keep in mind that you usually can't prevent another programmer from adding new classes to your package, even if you only deliver class files to that programmer. If you leave all your fields with package access, a programmer using your package can easily gain access to those fields by creating a class and declaring it as a member of your package. Therefore, it is best to keep data private, except sometimes when the data is final, so that irrespective of what package classes are defined in, all classes must go through methods to manipulate each other's fields.

The methods you define in public classes should have whatever level of access control matches their role in your program. You should exploit the full range of access levels provided by Java on the methods of your public classes, assigning to each method the most restrictive access level it can reasonably have.

You can use the same rule of thumb to design classes that have package access. You must keep in mind, however, that for package-access classes, fields and methods declared public won't be accessible outside the package. Fields and methods declared protected won't be accessible to subclasses in other packages, because there won't be any subclasses in other packages. Only classes within the same package will be able to subclass the package-access class. Still, you should probably keep the same mindset when designing package-access classes as you do when designing public classes, because at some later time you may turn a package-access class into a public class.

Access Levels for Interfaces

Interfaces have slightly different rules for access levels, because every field and method defined by an interface is implicitly public. You can't use the keywords private or protected on the fields and methods of interfaces. If you leave off the public keyword when declaring interface members, as is officially recommended by the Java Language Specification, you do not get package access. You still get public access. Therefore, you can't hide any implementation details of a package inside an interface (You can't hide an interface's members). On the other hand, you can hide the entire interface. If you don't declare an interface public, the interface as a whole will only be available to other types in the same package. As with classes, you should make interfaces public only if they are needed by classes and interfaces defined in other packages.

Here's an example of two interfaces. Interface Soakable is part of the internal implementation of a package. Interface Washable is part of the external implementation of the package:

// In Source Packet in file

// packages/ex5/com/artima/vcafe/dishes/Washable.java

package com.artima.vcafe.dishes;

public interface Washable {

 void wash();

}

// In Source Packet in file

// packages/ex5/com/artima/vcafe/dishes/Soakable.java

package com.artima.vcafe.dishes;

interface Soakable extends Washable {

 void soak();

}

In this example, wash() and breakIt() are not explicitly declared public, because they are public by default. Because the Washable interface as a whole is not explicitly declared as public, however, it has package access. Interface Washable is only be accessible to other types declared in the com.artima.vcafe.dishes package. Interface Breakable, because it is declared as public, is available to any type declared in any package.

Mention This

The compiler gives default constructors the same access level as their class. In the example above, class CoffeeCup is public, so the default constructor is public. If CoffeeCup had been given package access (which will be defined in , the default constructor would be given package access as well.

Example: How Singleton pattern can be implemented using private constructors.

Objects and Java by Bill Venners
Chapter 6:
Composition and Inheritance
Objects and Java | Contents | Previous | Next
Modeling the relationships between types is a fundamental part of the process of object-oriented design. This chapter shows you how to model relationships using composition and inheritance. It describes many facets of inheritance in Java, including abstract classes and final classes. [bv:need better intro]

Composition

As you progress in an object-oriented design, you will likely encounter objects in the problem domain that contain other objects. In this situation you will be drawn to modeling a similar arrangement in the design of your solution. In an object-oriented design of a Java program, the way in which you model objects that contain other objects is with composition, the act of composing a class out of references to other objects. With composition, references to the constituent objects become fields of the containing object.

For example, it might be useful if the coffee cup object of your program could contain coffee. Coffee itself could be a distinct class, which your program could instantiate. You would award coffee with a type if it exhibits behavior that is important to your solution. Perhaps it will swirl one way or another when stirred, keep track of a temperature that changes over time, or keep track of the proportions of coffee and any additives such as cream and sugar.

To use composition in Java, you use instance variables of one object to hold references to other objects. For the CoffeeCup example, you could create a field for coffee within the definition of class CoffeeCup, as shown below: [bv: implement the methods]

// In Source Packet in file inherit/ex1/CoffeeCup.java

class CoffeeCup {

 private Coffee innerCoffee;

 public void addCoffee(Coffee newCoffee) {

 // no implementation yet

 }

 public Coffee releaseOneSip(int sipSize) {

 // no implementation yet

 // (need a return so it will compile)

 return null;

 }

 public Coffee spillEntireContents() {

 // no implementation yet

 // (need a return so it will compile)

 return null;

 }

}

// In Source Packet in file inherit/ex1/Coffee.java

public class Coffee {

 private int mlCoffee;

 public void add(int amount) {

 // No implementation yet

 }

 public int remove(int amount) {

 // No implementation yet

 // (return 0 so it will compile)

 return 0;

 }

 public int removeAll() {

 // No implementation yet

 // (return 0 so it will compile)

 return 0;

 }

}

In the example above, the CoffeeCup class contains a reference to one other object, an object of type Coffee. Class Coffee is defined is a separate source file.

The relationship modeled by composition is often referred to as the "has-a" relationship. In this case a CoffeeCup has Coffee. As you can see from this example, the has-a relationship doesn't mean that the containing object must have a constituent object at all times, but that the containing object may have a constituent object at some time. Therefore the CoffeeCup may at some time contain Coffee, but it need not contain Coffee all the time. (When a CoffeeCup object doesn't contain Coffee, its innerCoffee field is null.) In addition, note that the object contained can change throughout the course of the containing object's life.

[bv: need to add UML diagram for composition, and explain the difference between composition and agregation and why I draw my diagrams like I do.]

Inheritance

As you partition your problem domain into types you will likely want to model relationships in which one type is a more specific or specialized version of another. For example you may have identified in your problem domain two types, Cup and CoffeeCup, and you want to be able to express in your solution that a CoffeeCup is a more specific kind of Cup (or a special kind of Cup). In an object-oriented design, you model this kind of relationship between types with inheritance.

Building Inheritance Hierarchies

The relationship modeled by inheritance is often referred to as the "is-a" relationship. In the case of Cup and CoffeeCup, a "CoffeeCup is-a Cup." Inheritance allows you to build hierarchies of classes, such as the one shown in Figure 5-1. The upside-down tree structure shown in Figure 5-1 is an example of an inheritance hierarchy displayed in UML form. Note that the classes become increasingly more specific as you traverse down the tree. A CoffeeCup is a more specific kind of Cup. A CoffeeMug is a more specific kind of CoffeeCup. Note also that the is-a relationship holds even for classes that are connected in the tree through other classes. For instance, a CoffeeMug is not only more specific version of a CoffeeCup, it is also a more specific version of a Cup. Therefore, the is-a relationship exists between CoffeeMug and Cup: a CoffeeMug is-a Cup.

[image: image6.png]is-a is-a
iva
CoffeeCup J TeaCup
iva
is-a is-a
CoffeeMug EspressoCup

Figure 5-1. The is-a relationship of inheritance

[bv: mention this is a UML diagram]

When programming in Java, you express the inheritance relationship with the extends keyword:

class Cup {

}

class CoffeeCup extends Cup {

}

class CoffeeMug extends CoffeeCup {

}

In Java terminology, a more general class in an inheritance hierarchy is called a superclass. A more specific class is a subclass. In Figure 5-1, Cup is a superclass of both CoffeeCup and CoffeeMug. Going in the opposite direction, both CoffeeMug and CoffeeCup are subclasses of Cup. When two classes are right next to each other in the inheritance hierarchy, their relationship is said to be direct. For example Cup is a direct superclass of CoffeeCup, and CoffeeMug is a direct subclass of CoffeeCup.

The act of declaring a direct subclass is referred to in Java circles as class extension. For example, a Java guru might be overheard saying, "Class CoffeeCup extends class Cup." Owing to the flexibility of the English language, Java in-the-knows may also employ the term "subclass" as a verb, as in "Class CoffeeCup subclasses class Cup." One other way to say the same thing is, "Class CoffeeCup descends from class Cup."

An inheritance hierarchy, such as the one shown in Figure 5-1, defines a family of types. The most general class in a family of types--the one at the root of the inheritance hierarchy--is called the base class. In Figure 5-1, the base class is Cup. Because every class defines a new type, you can use the word "type" in many places you can use "class." For example, a base class is a base type, a subclass is a subtype, and a direct superclass is a direct supertype.

In Java, every class descends from one common base class: Object. The declaration of class Cup above could have been written:

class Cup extends Object { // "extends Object" is optional

}

This declaration of Cup has the same effect as the earlier one that excluded the "extends Object" clause. If a class is declared with no extends clause, it by default extends the Object class. (The only exception to this rule is class Object itself, which has no superclass.) The inheritance hierarchy of Figure 5-1 could also have shown the Object class hovering above the Cup class, in its rightful place as the most super of all superclasses. In this case, class Object remained invisible, because the purpose of the figure was to focus on one particular family of types, the Cup family.

In Java, a class can have only one direct superclass. In object-oriented parlance, this is referred to as single inheritance . It contrasts with multiple inheritance , in which a class can have multiple direct superclasses. Although Java only supports single inheritance of classes through class extension, it supports a special variant of multiple inheritance through "interface implementation." Java interfaces, and how a class implements them, will be discussed in Chapter 7.

Inheriting interface and implementation

Modeling an is-a relationship is called inheritance because the subclass inherits the interface and, by default, the implementation of the superclass. Inheritance of interface guarantees that a subclass can accept all the same messages as its superclass. A subclass object can, in fact, be used anywhere a superclass object is called for. For example, a CoffeeCup as defined in Figure 5-1 can be used anywhere a Cup is needed. This substitutability of a subclass (a more specific type) for a superclass (a more general type) works because the subclass accepts all the same messages as the superclass. In a Java program, this means you can invoke on a subclass object any method you can invoke on the superclass object.

This is only half of the inheritance story, however, because by default, a subclass also inherits the entire implementation of the superclass. This means that not only does a subclass accept the same messages as its direct superclass, but by default it behaves identically to its direct superclass when it receives one of those messages. Yet unlike inheritance of interface, which is certain, inheritance of implementation is optional. For each method inherited from a superclass, a subclass may choose to adopt the inherited implementation, or to override it. To override a method, the subclass merely implements its own version of the method.

Overiding methods is a primary way a subclass specializes its behavior with respect to its superclass. A subclass has one other way to specialize besides overriding the implementation of methods that exist in its direct superclass. It can also extend the superclass's interface by adding new methods. This possibility will be discussed in detail later in the next chapter.

Suppose there is a method in class Cup with the following signature:

public void addLiquid(Liquid liq) {

}

The addLiquid() method could be invoked on any Cup object. Because CoffeeCup descends from Cup, the addLiquid() method could also be invoked on any CoffeeCup object.

If you do not explicitly define in class CoffeeCup a method with an identical signature and return type as the addLiquid() method shown above, your CoffeeCup class will inherit the same implementation (the same body of code) used by superclass Cup. If, however, you do define in CoffeeCup an addLiquid() method with the same signature and return type, that implementation overrides the implementation that would otherwise have been inherited by default from Cup.

When you override a method, you can make the access permission more public, but you cannot make it less public. So far, you have only been introduced to two access levels, public and private. There are, however, two other access levels that sit in-between public and private, which form the two ends of the access-level spectrum. (All four access levels will be discussed together in Chapter 8.). In the case of the addLiquid() method, because class Cup declares it with public access, class CoffeeCup must declare it public also. If CoffeeCup attempted to override addLiquid() with any other access level, class CoffeeCup wouldn't compile.

For an illustration of the difference between inheriting and overriding the implementation of a method, see Figure 5-2. The left side of this figure shows an example of inheriting an implementation, whereas the right side shows an example of overriding the implementation.

The method in question is the familiar addLiquid() method. In the superclass, Cup, a comment indicates that the code of the method, which is not shown in the figure, will cause the liquid to swirl clockwise as it is added to the cup. Liquid added to an instance of the CoffeeCup class defined on the left will also swirl clockwise, because that CoffeeCup inherits Cup's implementation of addLiquid(), which swirls clockwise. By contrast, liquid added to an instance of the CoffeeCup class defined on the right will swirl counterclockwise, because this CoffeeCup class overrides Cup's implementation with one of its own. A more advanced CoffeeCup could override addLiquid() with an implementation that first checks to see whether the coffee cup is in the northern or southern hemisphere of the planet, and based on that information, decide which way to swirl.

[image: image7.png]CoffeeCup inferits the
implementation of
addLiquid0

Cup

class Cup {
woid addLiquid(Liguid fig) {
switl clockwise
}
}

class CoffeeCup extends Cup (
)

CoffeeCup overridesthe
implementation of
addLiquid0)

CoffeeCup

class Cup {
woid addLiquid(Liguid fig) {
switl clockwise
}
}

class CoffeeCup extends Cup (
woid addLiquid(Liguid fig) {
switl counterclackwise
}
)

Figure 5-2. Inheriting vs. overriding the implementation of a method

In addition to the bodies of public methods, the implementation of a class includes any private methods and any fields defined in the class. Using the official Java meaning of the term "inherit," a subclass does not inherit private members of its superclass. It only inherits accessible members. Well- designed classes most often refuse other classes direct access to their non-constant fields, and this policy generally extends to subclasses as well. If a superclass has private fields, those fields will be part of the object data in its subclasses, but they will not be "inherited" by the subclass. Methods defined in the subclasses will not be able to directly access them. Subclasses, just like any other class, will have to access the superclass's private fields indirectly, through the superclass's methods.

Hiding Fields

If you define a field in a subclass that has the same name as an accessible field in its superclass, the subclass's field hides the superclass's version. (The type of the variables need not match, just the names.) For example, if a superclass declares a public field, subclasses will either inherit or hide it. (You can't override a field.) If a subclass hides a field, the superclass's version is still part of the subclass's object data; however, the subclass doesn't "inherit" the superclass's version of the field, because methods in the subclass can't access the superclass's version of the field by its simple name. They can only access the subclass's version of the field by its simple name. You can access the superclass's version by qualifying the simple name with the super keyword, as in super.fieldName. (More on super in the next section.)

Java permits you to declare a field in a subclass with the same name as a field in a superclass so you can add fields to a class without worrying about breaking compatibility with already existing subclasses. For example, you may publish a library of classes that your customers can use in their programs. If your customers subclass the classes in your library, you will likely have no idea what new fields they have declared in their subclasses. In making enhancements to your library, you may inadvertently add a field that has the same name as a field in one of your customer's subclasses. If Java didn't permit field hiding, the next time you released your library, your customer's program might not run properly, because the like- named field in the subclass would clash with the new field in the superclass from your library. Java's willingness to tolerate hidden fields makes subclasses more accepting of changes in their superclasses.

[bv: See Behind the Scenes in this chapter for a description of object images on a JVM heap?]

Abstract Classes and Methods

As you perform an object-oriented design, you may come across classes of objects that you would never want to instantiate. Those classes will nevertheless occupy a place in your hierarchies. An example of such a class might be the Liquid class from the previous discussions. Class Liquid served as a base class for the family of types that included subclasses Coffee, Milk, and Tea. While you can picture a customer walking into a café and ordering a coffee, a milk, or a tea, you might find it unlikely that a customer would come in and order a "liquid." You might also find it difficult to imagine how you would serve a "liquid." What would it look like? How would it taste? How would it swirl or gurgle?

Java provides a way to declare a class as conceptual only, not one that represents actual objects, but one that represents a category of types. Such classes are called abstract classes. To mark a class as abstract in Java, you merely declare it with the abstract keyword. The abstract keyword indicates the class should not be instantiated. Neither the Java compiler nor the Java Virtual Machine will allow an abstract class to be instantiated. The syntax is straightforward:

// In Source Packet in file inherit/ex6/Liquid.java

abstract class Liquid {

 void swirl(boolean clockwise) {

 System.out.println("One Liquid object is swirling.");

 }

 static void gurgle() {

 System.out.println("All Liquid objects are gurgling.");

 }

}

The above code makes Liquid a place holder in the family tree, unable to be an object in its own right.

Note that the Liquid class shown above still intends to implement a default behavior for swirling and gurgling. This is perfectly fine, however, classes are often made abstract when it doesn't make sense to implement all of the methods of the class's interface. The abstract keyword can be used on methods as well as classes, to indicate the method is part of the interface of the class, but does not have any implementation in that class. Any class with one or more abstract methods is itself abstract and must be declared as such. In the Liquid class, you may decide that there is no such thing as a default swirling behavior that all liquids share. If so, you can declare the swirl() method abstract and forgo an implementation, as shown below:

// In Source Packet in file inherit/ex7/Liquid.java

abstract class Liquid {

 abstract void swirl(boolean clockwise);

 static void gurgle() {

 System.out.println("All Liquid objects are gurgling.");

 }

}

In the above declaration of Liquid, the swirl() method is part of Liquid's interface, but doesn't have an implementation. Any subclasses that descend from the Liquid class shown above will have to either implement swirl() or declare themselves abstract. For example, if you decided there were so many varieties of coffee that there is no sensible default implementation for Coffee, you could neglect to implement swirl() in Coffee. In that case, however, you would need to declare Coffee abstract. If you didn't, you would get a compiler error when you attempted to compile the Coffee class. You would have to subclass Coffee (for example: Latte, Espresso, CafeAuLait) and implement swirl() in the subclasses, if you wanted the Coffee type to ever see any action.

Most often you will place abstract classes at the upper regions of your inheritance hierarchy, and non- abstract classes at the bottom. Nevertheless, Java does allow you to declare an abstract subclass of a non- abstract superclass. For example, you can declare a method inherited from a non-abstract superclass as abstract in the subclass, thereby rendering the method abstract at that point in the inheritance hierarchy. This design implies that the default implementation of the method is not applicable to that section of the hierarchy. As long as you implement the method again further down the hierarchy, this design would yield an abstract class sandwiched in the inheritance hierarchy between a non-abstract superclass and non- abstract subclasses.

Final Classes and Methods

Most Java programmers have two hats on their shelf, both of which they wear at different times. Sometimes they wear their "designer" hat, and build libraries of classes for others to use. Other times they wear their "client" hat, and make use of a library of classes created by someone else. Some Java programmers even wear both hats at the same time, completely oblivious to the rules of fashion.

When you put on your "designer" hat and work to build a library of classes that will be distributed to people you don't know and don't necessarily trust, you will likely encounter situations in which you want to prevent a client from declaring a subclass of one of the classes in your library. Or you might want to allow a client to declare a subclass, but you want to prevent them from overriding specific methods of the superclass. The reason you'll feel the need for this kind of control is that a client could take advantage of polymorphism to effectively change the behavior of the classes in your library. For example, a swirl() method of a hot beverage object could be redefined to swirl right out of the cup and dampen or possibly even scald a customer. Fortunately, Java gives you the final keyword to prevent just such nightmarish scenarios as that.

If you declare a method final, no subclass will be allowed to override that method. If you declare an entire class final, no other class will be allowed to extend it. In other words, a class declared final cannot be subclassed. In an inheritance diagram, a final class is the end of the line. No other classes will appear below it. Subclasses can appear below a non-final class that contains a final method, but every subclass will inherit the final implementation of the method.

Because marking a class or method final is so restrictive to clients of the class, you should use it with caution. Only if you are certain you want to absolutely prevent clients from declaring a subclass or overriding a method should you use the final keyword on a class or method.

Initialization and inheritance
When an object is initialized, all the instance variables defined in the object's class must be set to proper initial values. While this is necessary, often it is not enough to yield a fully initialized class. An object incorporates not only the fields explicitly declared in its class, but also those declared in its superclasses. To fully initialize an object, therefore, all instance variables declared in its class and in all its superclasses must be initialized.

Instance data of objects
Every object, except class Object itself, has at least one superclass. When an object is created, the Java virtual machine allocates enough space for all the object's instance variables, which include all fields defined in the object's class and in all its superclasses. For example, consider the following classes:

// Declared in file Object.java (not In source packet)

package java.lang;

public class Object {

 // Has no fields

 // Has several methods, not shown...

}

// In source packet in file init/ex14/Liquid.java

class Liquid {

 // Has two fields:

 private int mlVolume;

 private float temperature; // in Celsius

 // Has several methods, not shown...

}

// In source packet in file init/ex14/Coffee.java

class Coffee extends Liquid {

 // Has two fields:

 private boolean swirling;

 private boolean clockwise;

 // Has several methods, not shown...

}

	[image: image8.png]Object has no felds

Liguids flelds.
int mlvolune;
float temperature;

Caffee’s flds.
hoolean isswirling:
boolean clockuise:

Figure 4-1. Class Coffee's superclasses and fields

You can see the inheritance hierarchy for class Coffee, as defined above, in Figure 1. This figure, as well as the code above, shows Object as having no instance variables. But it is possible that Object could have instance variables. The actual internal make-up of class Object is a detail specific to each Java platform implementation. It is extremely likely, however, that Object will have no fields in any given Java platform implementation. Because Object is the superclass of all other objects, any fields declared in Object must be allocated for every object used by every Java program.

In Figure 2, you can see the data that must be allocated on the heap for a Coffee object. The part of the heap that is occupied by the instance data for the Coffee object is shown in the cyan color. Keep in mind that the actual manner of representing objects on the heap is an implementation detail of each particular Java virtual machine. This figure represents just one of many possible schemes for storing objects on the heap inside the JVM.

	[image: image9.png]the heap

4 bytes
4 bytes l—int mlvolume

4 bytes l—float temperature
4 bytes l—int swirling

4 bytes l—int clockwise

4 bytes — native pointer to class

4 bytes information

Figure 4-2. Instance data for a Coffee object

Figure 2 shows that the instance data for a Coffee object includes each instance variable defined in class Coffee and each of Coffee's superclasses. Both of Liquid's fields, mlVolume and temperature, are part of the Coffee object's data, as well as Coffee's fields: swirling and clockwise. This is true even though Coffee doesn't actually inherit the mlVolume and temperature fields from class Liquid.

A note on the word "inherit"
In Java jargon, the word "inherit" has a restricted meaning. A subclass inherits only accessible members of its superclasses -- and only if the subclass doesn't override or hide those accessible members. A class's members are the fields and methods actually declared in the class, plus any fields and methods it inherits from superclasses. In this case, because Liquid's mlVolume and temperature fields are private, they are not accessible to class Coffee. Coffee does not inherit those fields. As a result, the methods declared in class Coffee can't directly access those fields. Despite this, those fields are still part of the instance data of a Coffee object.

Pointers to class data
Figure 2 also shows, as part of the instance data of the Coffee object, a mysterious 4-byte quantity labeled "native pointer to class information." Every Java virtual machine must have the capability to determine information about its class, given only a reference to an object. This is needed for many reasons, including type-safe casting and the instanceof operator.

Figure 2 illustrates one way in which a Java virtual machine implementation could associate class information with the instance data for an object. In this figure, a native pointer to a data structure containing class information is stored along with the instance variables for an object. The details in which the various ways a JVM could connect an object's data with its class information are beyond the scope of this article. The important thing to understand here is that class information will in some way be associated with the instance data of objects, and that the instance data includes fields for an object's class and all its superclasses.

Initializing fields in superclasses
Each class contains code to initialize the fields explicitly declared in that class. Unlike methods, constructors are never inherited. If you don't explicitly declare a constructor in a class, that class will not inherit a constructor from its direct superclass. Instead, the compiler will generate a default constructor for that class. This is because a superclass constructor can't initialize fields in the subclass. A subclass must have its own constructor to initialize its own instance variables. In the class file, this translates to: every class has at least one <init> method responsible for initializing the class variables explicitly declared in that class.

For every object, you can trace a path of classes on an inheritance hierarchy between the object's class and class Object. For the Coffee object described above and shown in Figures 1 and 2, the path is: Coffee, Liquid, Object. To fully initialize an object, the Java virtual machine must invoke (at least) one instance initialization method from each class along the object's inheritance path. In the case of Coffee, this means that at least one instance initialization method must be invoked for each of the classes Coffee, Liquid, and Object.

During initialization, an <init> method may use one field in calculating another field's initial value. While this is perfectly reasonable, it brings up the possibility that a field could be used before it has been initialized to its proper (not default) initial value. As mentioned earlier in this article, Java includes mechanisms that help prevent an instance variable from being used before it has been properly initialized. One mechanism is the rule, enforced by the Java compiler, forbidding initializers from directly using instance variables declared textually after the variable being initialized. Another mechanism is the order in which the fields from each class along an object's inheritance path are initialized: the "order of initialization."

Order of initialization
In Java, the fields of an object are initialized starting with the fields declared in the base class and ending with the fields declared in the object's class. For a CoffeeCup object with the inheritance path shown in Figure 1, the order of initialization of fields would be:

1. Object's fields (this will be quick, because there are none)

2. Liquid's fields (mlVolume and temperature)

3. Coffee's fields (swirling and clockwise)

This base-class-first order aims to prevent fields from being used before they are initialized to their proper (not default) values. In a constructor or initializer, you can safely use a superclass's field directly, or call a method that uses a superclass's field. By the time the code in your constructor or initializer is executed, you can be certain that the fields declared in any superclasses have already been properly initialized.

For example, you could safely use the temperature variable declared in class Liquid when you are initializing the swirling variable declared in class Coffee. (Perhaps if the temperature is above the boiling point for coffee, you set swirling to false.) If temperature were not private, class Coffee would inherit the field, and you could use it directly in an initializer or constructor of class Coffee. In this case, temperature is private, so you'll have to use the temperature field indirectly, through a method:

// In source packet in file init/ex15/Liquid.java

class Liquid {

 private int mlVolume;

 private float temperature; // in Celsius

 public Liquid() {

 mlVolume = 300;

 temperature = (float) (Math.random() * 100.0);

 }

 public float getTemperature() {

 return temperature;

 }

 // Has several other methods, not shown...

}

// In source packet in file init/ex15/Coffee.java

class Coffee extends Liquid {

 private static final float BOILING_POINT = 100.0f; // Celsius

 private boolean swirling;

 private boolean clockwise;

 public Coffee(boolean swirling, boolean clockwise) {

 if (getTemperature() >= BOILING_POINT) {

 // Leave swirling at default value: false

 return;

 }

 this.swirling = swirling;

 if (swirling) {

 this.clockwise = clockwise;

 } // else, leave clockwise at default value: false

 }

 // Has several methods, not shown,

 // but doesn't override getTemperature()...

}

In the example, the constructor for Coffee invokes getTemperature() and uses the return value in the calculation of the proper initial value of swirling and clockwise. getTemperature() returns the value of the temperature variable; thus, the constructor for Coffee uses a field declared in Liquid. This works because, by the time the code inside Coffee's constructor is executed, the instance variables declared in Liquid are guaranteed to have already been initialized to their proper starting values.

Design Corner

Composition versus Inheritance

Behind the Scenes

[bv: want to have description of object image on the JVM heap here?]

[bv: want to mention that Object can be redefined?]

The structure of <init>
How does Java ensure the correct ordering of initialization? By the manner in which the Java compiler generates the instance initialization method. Into each <init> method, the compiler can place three kinds of code:

1. An invocation of another constructor

2. Initializers in textual order

3. The constructor body

The order in which the compiler places these components into the <init> method determines the order of initialization of an object's fields.

(Almost) every constructor's first act
For every class except Object, the first thing each <init> method will do is invoke another constructor. If you included a this() invocation as the first statement in a constructor, the corresponding <init> method will start by calling another <init> method of the same class. For example, for the following class:

// In source packet in file init/ex4/CoffeeCup.java

class CoffeeCup {

 private int innerCoffee;

 public CoffeeCup() {

 this(237); // Calls other constructor

 // Could have done more construction here

 }

 public CoffeeCup(int amount) {

 innerCoffee = amount;

 }

 // ...

}

The <init> method for the no-arg constructor would first invoke the <init> method for the constructor, which takes an int parameter, passing it 237.

Automatic invocation of super()
For any class except class java.lang.Object, if you write a constructor that does not begin with a this() invocation, the <init> method for that constructor will begin with an invocation of a superclass constructor. You can explicitly invoke a superclass constructor using the super() statement. If you don't, the compiler will automatically generate an invocation of the superclass's no-arg constructor. (This is true for default constructors as well. With the exception of class Object, the <init> method for any default constructor will do only one thing: invoke the <init> method for the superclass's no-arg constructor.) For example, given this CoffeeCup constructor from the example above:

public CoffeeCup(int amount) {

 innerCoffee = amount;

}

The corresponding <init> method would begin with an invocation of the <init> method for Liquid's (the direct superclass's) no-arg constructor.

Alternatively, you could have included an explicit super() statement at the top of the Coffee constructor, as in:

public CoffeeCup(int amount) {

 super();

 innerCoffee = amount;

}

This version has the same effect as the previous version. If you want to invoke the superclass's no-arg constructor, you needn't provide an explicit super() invocation. The compiler will generate a no-arg super() invocation for you.

Invoking super() with arguments
If, on the other hand, you want to invoke a superclass constructor that takes parameters, you must provide an explicit super() invocation. Here's an example:

// In source packet in file init/ex16/Liquid.java

class Liquid {

 private int mlVolume;

 private float temperature; // in Celsius

 public Liquid(int mlVolume, float temperature) {

 this.mlVolume = mlVolume;

 this.temperature = temperature;

 }

 public float getTemperature() {

 return temperature;

 }

 // Has several other methods, not shown,

 // but doesn't include another constructor...

}

// In source packet in file init/ex16/Coffee.java

public class Coffee extends Liquid {

 private static final float BOILING_POINT = 100.0f; // Celsius

 private boolean swirling;

 private boolean clockwise;

 public Coffee(int mlVolume, float temperature,

 boolean swirling, boolean clockwise) {

 super(mlVolume, temperature);

 if (getTemperature() > BOILING_POINT) {

 // Leave swirling at default value: false

 return;

 }

 this.swirling = swirling;

 if (swirling) {

 this.clockwise = clockwise;

 } // else, leave clockwise at default value: false

 }

 // has several methods, not shown,

 // but doesn't override getTemperature()...

}

In this example, Coffee's constructor explicitly invokes Liquid's constructor with a super() statement. Because class Liquid explicitly declares a constructor, the Java compiler won't generate a default constructor. Moreover, because Liquid doesn't explicitly declare a no-arg constructor, class Liquid won't have a no-arg constructor at all. For this reason, had Coffee's constructor not started with an explicit super() invocation, class Coffee would not have compiled. (Given this declaration of class Liquid, a simple new Liquid() statement would not compile either. You must invoke the constructor that is available to you, as in: new Liquid(25, 50.0).) If a subclass's direct superclass does not offer a no-arg constructor, every constructor in that subclass must begin with either an explicit super() or this()invocation.

Only one constructor invocation allowed
Note that you can't have both this() and super() in the same constructor. You can only have one or the other (or neither, if the direct superclass includes a no-arg constructor). If a constructor includes a this() or super() invocation, it must be the first statement in the constructor.

Catching exceptions not allowed
One other rule enforced on constructors is that you can't catch any exceptions thrown by the constructor invoked with this() or super(). To do so, you would have to begin your constructor with a try statement:

// In source packet in file init/ex17/Coffee.java

// THIS WON'T COMPILE, BECAUSE THE super() INVOCATION

// DOESN'T COME FIRST IN THE CONSTRUCTOR

class Coffee extends Liquid {

 //...

 public Coffee(int mlVolume, float temperature,

 boolean swirling, boolean clockwise) {

 try {

 super(mlVolume, temperature);

 }

 catch (Throwable e) {

 //...

 }

 //...

 }

 //...

}

The point to understand here is that if any instance initialization method completes abruptly by throwing an exception, initialization of the object fails. This in turn means that object creation fails, because in Java programs, objects must be properly initialized before they are used.

The proper way to signal that an error occurred during object initialization is by throwing an exception. If an <init> method throws an exception, it is likely that at least some of the fields that <init> method normally takes responsibility for did not get properly initialized. If you were able to catch an exception thrown by an <init> method you invoked with this() or super(), you could ignore the exception and complete normally. This could result in an improperly or incompletely initialized object being returned by new. This is why catching exceptions thrown by <init> methods invoked via this() or super() is not allowed.

Inheritance and initialization order
From the many rules that surround the invocation of instance initialization methods via this() or super(), there arises a clear and certain order for instance variable initialization. Although <init> methods are called in an order starting from the object's class and proceeding up the inheritance path to class Object, instance variables are initialized in the reverse order. Instance variables are initialized in an order starting from class Object and proceeding down the inheritance path to the object's class. The reason the order of instance variable initialization is reverse to that of <init> method invocation is that the first thing each <init> method (except Object's) does is call another <init> method. So the superclass <init> method is invoked and completes before any initialization code of the current class's <init> method begins execution.

As an example of this ordering, consider again the inheritance hierarchy for class Coffee as shown in Figure 1 and the following implementation of those classes:

// In source packet in file init/ex18/Liquid.java

class Liquid {

 private int mlVolume;

 private float temperature; // in Celsius

 Liquid(int mlVolume, float temperature) {

 this.mlVolume = mlVolume;

 this.temperature = temperature;

 }

 //...

}

// In source packet in file init/ex18/Coffee.java

class Coffee extends Liquid {

 private boolean swirling;

 private boolean clockwise;

 public Coffee(int mlVolume, float temperature,

 boolean swirling, boolean clockwise) {

 super(mlVolume, temperature);

 this.swirling = swirling;

 this.clockwise = clockwise;

 }

 //...

}

When you instantiate a new Coffee object with the new operator, the Java virtual machine first will allocate (at least) enough space on the heap to hold all the instance variables declared in Coffee and its superclasses. Second, the virtual machine will initialize all the instance variables to their default initial values. Third, the virtual machine will invoke the <init> method in the Coffee class.

The first thing Coffee's <init> method will do is invoke the <init> method in its direct superclass, Liquid. The first thing Liquid's <init> method will do is invoke the no-arg <init> method in its direct superclass, Object. Object's <init> method most likely will do nothing but return, because it has no instance variables to initialize. (Once again, what Object's <init> method actually does is an implementation detail of each particular Java runtime environment.) When Object's <init> method returns, Liquids <init> method will initialize mlVolume and temperature to their proper starting values and return. When Liquids <init> method returns, Coffee's <init> method will initialize swirling and clockwise to their proper starting values and return. Upon normal completion of Coffee's <init> method (in other words, so long as it doesn't complete abruptly by throwing an exception), the JVM will return the reference to the new Coffee object as the result of the new operator.

this() won't change the order of initialization
Note that if an <init> method begins not by invoking a superclass's <init> method (a super() invocation), but instead by invoking another <init> method from the same class (a this() invocation), the order of instance variable initialization remains the same. You can have several this() invocations in a row if you wish. In other words, you could have an <init> method that invokes another with this(), and that <init> method invokes yet another with this(), and so on. But in the end, there will always be an <init> method with a super() invocation -- either an explicit super() invocation or a compiler-generated one. Since this() and super() are both always the first action a constructor takes, the instance variables will always be initialized in order from the base class on down.

In addition to the code for constructor invocations and constructor bodies, the Java compiler also places code for any initializers in the <init> method. If a class includes initializers, the code for them will be placed after the superclass method invocation but before the code for the constructor body, in every <init> method that begins with an explicit or implicit super() invocation. Code for initializers are not included as part of <init> methods that begin with a this() invocation. Because initializer code appears only in <init> methods that begin with a super() invocation, and not in those that begin with a this() invocation, the initializers for a class are guaranteed to be run only once for each new class creation. Because initializers appear after the super() invocation and before the code from the constructor's body, you can always be certain that initializers will have been run by the time any constructor code for that class is executed.

Calling subclassed methods from constructors
The strict ordering of instance variable initialization enforced by the Java compiler is, in part, an effort to ensure that during the initialization process, instance variables are never used before they have been initialized to their proper initial values. As illustrated earlier in this article, however, the rules of ordering are not bulletproof. There are ways you can use an instance variable during initialization before it has been initialized to its proper value, while it still has its default value. In the case of instance variable initializers, you can invoke a method that uses a variable declared textually after the variable being initialized. Another way to use an instance variable before it has been properly initialized is to invoke a method from a superclass initializer or constructor that uses instance variables in a subclass.

Unlike C++, which treats the invocation of virtual functions from constructors specially, Java methods invoked from <init> methods behave the same as if they were invoked from any method. If <init> in a superclass invokes a method that has been overridden in a subclass, the subclass's implementation of that method will run. If the subclass's method implementation uses instance variables explicitly declared in the subclass, those variables will still have their default initial values.

You should be careful when you invoke methods from initializers or constructors, because you can end up using instance variables before they've been properly initialized -- while they still have their default initial values. It is fine to use variables while they still have their default initial values, so long as it is the result you are aiming for. If you invoke non-private methods from initializers and constructors, remember that later some other programmer could come along, extend your class, and override those methods, thereby thwarting your grand initialization scheme.

Example Programs

Could perhaps show how class vars can be used to keep track of all the instances of the class and then how a gurgleAllObjects() class method can send gurgle() methods to all objects.

On the CD-ROM

The CD-ROM contains several examples from this chapter, all of which are in subdirectories of the inherit directory. The files for example one are in the ex1 subdirectory, the files for example two are in ex2, and so on.

Example one is simply the CoffeeCup and Coffee classes, shown above, that illustrate composition. In this version of CoffeeCup, the innerCoffee instance variable is a reference to an object of type Coffee. The files are in the inherit/ex1 directory.

Example two is the polymorphism example. All of the code for this example is shown above as part of the text of this chapter. The files are in the inherit/ex2 directory. In this example, the addLiquid() method of class CoffeeCup use polymorphism to call the appropriate swirl() method an object that either is or descends from class Liquid. If you execute the Java application, Example2, it will print out the output:

Liquid Swirling

Coffee Swirling

Milk Swirling

Example three is an example of poor design that doesn't take advantage of polymorphism. Only the UglyCoffeeCup class from this example is shown in the text of this chapter. (The rest aren't shown because this example doesn't provide a positive role model.) All the files exist in the inherit/ex3 directory of the CD-ROM, however, so you can run the application Example3. When you run Example3, you get the same output as Example2 gives you. The example works, it just doesn't take advantage of polymorphism. Try to avoid this style of program design.

Example four illustrates the difference between static and dynamic binding. The code for all the files in this example, which are shown above as part of the text of this chapter. The files are in the inherit/ex4 directory. You can see the different between static and dynamic binding by running Example4a, which doesn't yield the desired behavior of gurgling all milk objects. Example4b shows one way to gurgle milk, however, the preferred way to gurgle milk is shown in Example4c. When you run Example4c, it will print out:

One Milk object is swirling.

All Milk objects are gurgling.

Example five illustrates adding behavior to one member of a family of types, and using instanceof to access that behavior. All of the code in this example is shown above in the text of this chapter. The files are in the inherit/ex5 directory of the CD- ROM. In this example, two of the source files, Example5a.java and Example5c.java, don't compile. These files illustrate that you can't access a method defined in a subclass, Tea, if you have a reference to a superclass, Liquid. You can, however, run Example5b and Example5d. When you run Example5d, which illustrates the proper way to access the readFuture() method defined in subclass Tea, the application will print out:

Tea Swirling

Reading the future...

Examples six and seven are simply the two Liquid classes, shown above, that illustrate abstract classes and methods. In example six, which is in the inherit/ex6 directory, class Liquid is declared abstract even though it doesn't contain any abstract methods. In example seven, which is in the inherit/ex7 directory, both the swirl() method and the Liquid class itself are declared abstract.

Objects and Java by Bill Venners
Chapter 7:
Polymorphism and Interfaces
Objects and Java | Contents | Previous | Next
There are two good reasons to learn the meaning of polymorphism. First, using such a fancy word in casual conversation makes you sound intelligent. Second, polymorphism provides one of the most useful programming techniques of the object-oriented paradigm. Polymorphism, which etymologically means "many forms," is the ability to treat an object of any subclass of a base class as if it were an object of the base class. A base class has, therefore, many forms: the base class itself, and any of its subclasses.

If you need to write code that deals with a family of types, the code can ignore type-specific details and just interact with the base type of the family. Even though the code thinks it is sending messages to an object of the base class, the object's class could actually be the base class or any one of its subclasses. This makes your code easier for you to write and easier for others to understand. It also makes your code extensible, because other subclasses could be added later to the family of types, and objects of those new subclasses would also work with the existing code.

To see how to use polymorphism in a Java program, consider the family of types shown in Figure 8-1. To use an object of type Liquid, you must create a Liquid object with new and store the returned reference in a variable:

Liquid myFavoriteBeverage = new Liquid();

The myFavoriteBeverage variable holds a reference to a Liquid object. This is a sensible arrangement; however, there is another possibility brought to you courtesy of polymorphism. Because of polymorphism, you can assign a reference to any object that is-a Liquid to a variable of type Liquid. So, assuming the inheritance hierarchy shown in Figure 8-1, either of the following assignments will also work:

Liquid myFavoriteBeverage = new Coffee();

// or...

Liquid myFavoriteBeverage = new Milk();

Therefore, you can sprinkle some polymorphism in your Java program simply by using a variable with a base type to hold a reference to an object of a derived type.

[image: image10.png]Liquid

Coffee

Figure 8-1. The Liquid Family
To get the full benefit of polymorphism in your programs, however, you'll need to go further. To fully realize the wonders of polymorphism, you must send a message to an object without knowing the actual class of the object. To do this in Java, you just invoke a method defined in a base type on an object referenced by a variable of the base type. As you saw above, the object referred to by a base class reference might be of the base class or any of its subclasses. Therefore, when you write the code to invoke the method, you don't necessarily know the actual class of the object. Likewise, when you compile the code, the compiler doesn't necessarily know the actual class of the object. At run-time, the Java Virtual Machine determines the actual class of the object each time the method invocation is requested by your program. Based on this information, the Java Virtual Machine invokes the method implementation belonging to the object's actual class. Letting the Java Virtual Machine determine which method implementation to invoke, based on the actual class of the object, is how you realize the full power of polymorphism in your programs.

As an example, consider the family of types for Liquid shown in Figure 8-1. Assume the base class, Liquid, defines a method swirl() which takes a boolean parameter clockwise. When swirl() is invoked on a Liquid object, the object simulates a swirling motion. If the clockwise parameter is true, the Liquid object swirls clockwise. Otherwise, the Liquid object swirls counterclockwise. Assume also that the subclasses Coffee and Milk override the default implementation of swirl() to account for the unique viscosity of those specific kinds of Liquid. Milk, for instance, might swirl more slowly because it is thicker. This arrangement can be expressed in Java code as follows:

// NEED TO ADD add() TO Liquid

// In Source Packet in file inherit/ex2/Liquid.java

class Liquid {

 void swirl(boolean clockwise) {

 // Implement the default swirling behavior for liquids

 System.out.println("Swirling Liquid");

 }

}

// In Source Packet in file inherit/ex2/Coffee.java

class Coffee extends Liquid {

 void swirl(boolean clockwise) {

 // Simulate the peculiar swirling behavior exhibited

 // by Coffee

 System.out.println("Swirling Coffee");

 }

}

// In Source Packet in file inherit/ex2/Milk.java

class Milk extends Liquid {

 void swirl(boolean clockwise) {

 // Model milk's manner of swirling

 System.out.println("Swirling Milk");

 }

}

To carry the example further, take another look at the addLiquid() method of the Cup family of types shown in Figure 8-1. Assume class Cup defines an addLiquid()method that you have overridden in class CoffeeCup, much like the example on the right hand side of Figure 7-2. In the right hand version of Figure 7-2, class CoffeeCup overrides addLiquid() so that the liquid can be made to swirl counterclockwise as it is added to the cup. Now that you have a Liquid class with an actual swirl() method, you could implement the addLiquid() method in CoffeeCup as follows:

// In Source Packet in file inherit/ex2/CoffeeCup.java

class CoffeeCup {

 private Liquid innerLiquid;

 void addLiquid(Liquid liq) {

 innerLiquid.add(liq);

 // Swirl counterclockwise

 innerLiquid.swirl(false);

 }

}

Given the above definition of CoffeeCup, you can reap the benefit of polymorphism by invoking addLiquid() with different kinds of liquid:

// In Source Packet in file inherit/ex2/Example2.java

class Example2 {

 public static void main(String[] args) {

 // First you need a coffee cup

 CoffeeCup myCup = new CoffeeCup();

 // Next you need various kinds of liquid

 Liquid genericLiquid = new Liquid();

 Coffee coffee = new Coffee();

 Milk milk = new Milk();

 // Now you can add the different liquids to the cup

 myCup.addLiquid(genericLiquid);

 myCup.addLiquid(coffee);

 myCup.addLiquid(milk);

 }

}

Note that the definition of addLiquid() treats the object passed in as a parameter as if it is of type Liquid, yet the code above passes types Coffee and Milk as well as Liquid. The code of the addLiquid() method, therefore, doesn't know the exact class of the object it is being passed. When swirl() is invoked on the object at run-time, the implementation of swirl() that gets executed depends upon the actual class of the object. In the first case, when genericLiquid is passed, Liquid's implementation of swirl() will be executed. When coffee is passed, Coffee's implementation of swirl() will be executed. In the last case, when milk is passed, Milk's implementation of swirl() will be executed.

Therefore, when milk is added to the cup, it will swirl like milk. When coffee is added, it will swirl like coffee. All this is accomplished even though the code of the addLiquid() method does not know the actual class of the object passed. This is the beauty of polymorphism.

Had you not known about polymorphism, you might have designed the Liquid family and the addLiquid() method differently. Instead of taking advantage of polymorphism's ability to figure out which method to call, you could have used a brute force method:

// In Source Packet in file inherit/ex3/UglyCoffeeCup.java

// This version doesn't take advantage of polymorphism.

class UglyCoffeeCup {

 Liquid innerLiquid;

 void addLiquid(Liquid liq) {

 innerLiquid = liq;

 if (liq instanceof Milk) {

 ((Milk) innerLiquid).swirlLikeMilk(false);

 }

 else if (liq instanceof Coffee) {

 ((Coffee) innerLiquid).swirlLikeCoffee(false);

 }

 else {

 innerLiquid.swirlLikeGenericLiquid(false);

 }

 }

}

The creation of if-else constructs like the one shown above are possible in Java because of the instanceof operator, which allows you to check whether an object is an instance of a certain class. Here the instanceof operator is being abused, and the code should be reorganized to use polymorphism. The instanceof operator, and the situations in which it should be used, will be discussed later in this chapter.

The above code is more difficult to read and less extensible than the code (shown earlier) that took full advantage of polymorphism. If later you added a new type to the Liquid family, say Tea, you would have to add another if-else statement to the above code. You would not, however, need to make any changes to the earlier addLiquid() implementation that took advantage of polymorphism. That implementation of addLiquid() would still work, even though you wrote it before you knew about Tea. Whenever you find yourself writing a series of if- else statements, where the condition is a test of type, you should try and see if your program can't be redesigned to take advantage of polymorphism.

Programming down the path of polymorphism implies that you write code that lets an object figure out how it should behave. In the previous example, you told an object to swirl, and expected it to swirl in the manner objects of its class are supposed to swirl. You didn't tell it explicitly whether it should swirl like milk or coffee, you just told it to swirl. If the object was actually milk, you expected it to behave like milk and swirl in a milky way. This attitude towards objects fits well with the object-oriented mindset, because the customary mission of a method is to manipulate the internal data of the object. Objects are supposed to know best how to manipulate their own data, which is the reason data is usually private. Keeping data private gives full responsibility for proper manipulation of the internal state of an object to the object's methods. Polymorphism gives you another way in which you can give objects responsibility for their own behavior--the object's behavior matches its class.

Static versus Dynamic Binding

The underlying mechanism that makes polymorphism possible is dynamic binding. Except for three special cases, all instance methods in Java programs are dynamically bound. The instance method that is invoked at run-time will be determined by the actual class of the object, not by the type of the reference. This differs from C++, in which you must declare an instance method virtual to get polymorphism and dynamic binding. If you don't declare an instance method virtual in a C++ class, you get static binding, in which the method called is determined by the type of the reference, not the class of the object referred to by the reference. Polymorphism plays no role in static binding. In C++, therefore, a programmer can, wielding the power of the virtual keyword, create instance methods that are either statically or dynamically bound. In Java, however, "virtual" is not a keyword, and all instance methods, except for the three special cases, are dynamically bound. The three special cases are private methods, instance method invocations with the super keyword, and invocation of instance initialization methods. These cases will be described further later in this chapter.

Static binding also plays a role in class methods (those declared with the static modifier), which are always statically bound. You can redefine a class method in a subclass, just like an instance method; however, a redefined class method will not participate in the rewards of polymorphism and dynamic binding. Because class methods do not operate on specific objects, you don't even need an object to call them. Class methods can be invoked even when no instances of the class exist. Polymorphism requires an object, because it enables a method to be dynamically selected based on the actual class of the object. Thus, polymorphism does not apply to class methods. If you invoke a class method on an object, the implementation of the class method is chosen based not on the class of the object at run-time, but on the type of the object reference at compile-time.

For example, imagine you want to be able to simulate an earth tremor in your cafe, by sending a message to all liquids in the cafe, telling the liquids to gurgle. The clientele of the cafe will know something is happening when, as a result of the pan-liquid gurgle command, they see their coffees and teas producing bubbles and generally sloshing about. One way you could model this in your Java program is by declaring a static method, gurgle(), in the Liquid class:

// In Source Packet in file inherit/ex4/Liquid.java

class Liquid {

 void swirl(boolean clockwise) {

 System.out.println("One Liquid object is swirling.");

 }

 static void gurgle() {

 System.out.println("All Liquid objects are gurgling.");

 }

}

Suppose you also wish to model an unusual kind of earth tremor that affects only milk, but not any other type of liquid. Perhaps the frequency of the tremor matches exactly the resonant frequency of milk, so milk is the only liquid visibly affected. In this case you want to be able to send the gurgle command to all milks, but not to any other liquids in the cafe. You could model this in your program by adding a gurgle() method to the Milk class:

// In Source Packet in file inherit/ex4/Milk.java

class Milk extends Liquid {

 void swirl(boolean clockwise) {

 System.out.println("One Milk object is swirling.");

 }

 static void gurgle() {

 System.out.println("All Milk objects are gurgling.");

 }

}

Armed with the implementations of Liquid and Milk shown above, you are ready to have some fun. Assume you wish to start by simulating an earth tremor that gurgles milk, but leaves all other liquids alone. Given your pleasant experience of polymorphism with instance methods, you might try to accomplish the milk gurgling by code similar to the following:

// In Source Packet in file inherit/ex4/Example4a.java

class Example4a {

 public static void main(String[] args) {

 Liquid liq = new Milk();

 liq.swirl(true);

 liq.gurgle();

 }

}

Unfortunately, the above code will generate the following output:

One Milk object is swirling.

All Liquid objects are gurgling.

The output generated by the above code demonstrates the statically linked nature of class method invocations. In this code you have a reference of type Liquid, but an object of class Milk. When you invoked swirl() on the object, polymorphism came through for you, because Milk's implementation of swirl() was executed. When you invoked gurgle(), however, polymorphism abandoned you, and Liquid's implementation of gurgle() was executed. The implementation of gurgle() to invoke was determined statically at compile-time based on the reference's type (Liquid), not dynamically at run-time based on the object's class (Milk).

One way to solve the problem is to make sure you invoke gurgle() on a Milk object being referred to by a reference of type Milk, as in:

// In Source Packet in file inherit/ex4/Example4b.java

class Example4b {

 public static void main(String[] args) {

 Milk m = new Milk();

 m.swirl(true);

 m.gurgle();

 }

}

This code generates the desired effect. One Milk object is swirled, and all Milk objects are gurgled. The output generated by the above code is:

One Milk object is swirling.

All Milk objects are gurgling.

Yet even though you have gotten the results you want, you still haven't written code that clearly indicates the class-wide nature of gurgle(). Most of the time, the best way to invoke a class method is to use the class name, not a reference to an object of the class. For example, you could rewrite the above code:

// In Source Packet in file inherit/ex4/Example4c.java

class Example4c {

 public static void main(String[] args) {

 Milk m = new Milk();

 m.swirl(true);

 Milk.gurgle();

 }

}

The line Milk.gurgle() more clearly indicates that a class method is being invoked, and that polymorphism is not involved.

Redefining an instance method in a subclass is called "overriding" the instance method, however, redefining a class method is not called "overriding." Instead, it is called hiding the class method. The term "override" is associated with polymorphism, which doesn't apply to class methods. Therefore, you can't override a class method, you can only hide it. For example, the gurgle() method defined in Milk above hides the gurgle() implementation defined in Liquid.

Because an invocation of a statically bound class method on an object looks similar to the invocation of a dynamically bound instance method, you must be careful to always keep in mind the difference. Invoking class methods using the class name, as in Milk.gurgle(), instead of an object reference, as in m.gurgle(), is a good rule of thumb to help clarify your code.

The this Reference

Point out using this for this.attr = attr, and mention this is a kind of hiding. Talk about hiding in general, and make another request for private data.

The super Reference

Here talk about this, super, and ((SuperClass) var).memberName. Yes. This is where I can mention the static binding of fields, because I show it with the (()) example. Whereas you could invoke a virtual method in a superclass in C++ by using the scope resolution operator, in Java you can't access any instance method that the current class overrides in any superclass other than your direct superclass. You can do it with a field, whether its an instance or class variable, and with a class method simply by casting the this reference to a superclass type.

Any field you declare private can't be hidden. If you favor private data in your class designs, field hiding should be rare. You may occasionally encounter hiding with constant fields, which are often declared public. You may also encounter field hiding when you use libraries that declare public fields.

One other justification for keeping data private is that fields are accessed not based on the class of the object, but on the type of the reference. If a subclass hides a public instance variable of its superclass, then

[YIKES, DON'T I NEED TO TALK ABOUT STUFF FROM PAGE 61 OF JPL BOOK? FIELDS ARE ACCESSED NOT BASED ON THE CLASS OF OBJECT, BUT THE TYPE OF THE REFERENCE.]

Adding New Fields and Methods to a Subclass

The techniques discussed so far yield families of types in which all classes in the family have the precisely same interface. A subclass can differentiate itself from all the other classes in the family by overriding methods inherited from its direct superclass. In this very object-oriented scheme, a class that belongs to a family of types expresses its uniqueness not by the interface it presents to the world, but by the implementation underneath the interface. All the classes in a family might have a swirl() method, for example, but each individual class might swirl in its own unique way. This manner of modeling families of types is very expressive and allows you to take advantage of polymorphism, but can sometimes restrict your ability to model the specific nature of a subclass. Sometimes you may want a subclass to accept messages that its superclass does not accept. To do this you must extend the inherited interface. You must add to the subclass new methods that did not exist in the superclass.

Java allows you to define methods that enable a subclass to receive messages that would normally be accepted only by the subclass, and not by a more general superclass. This muddies the object-oriented metaphor a bit, because even though you can still substitute a subclass wherever a superclass is required, the new methods you added to the subclass aren't accessible when you are treating the subclass as if it is a superclass. For this reason, you will usually want to first attempt to design families of types in which subclasses contain only methods that override methods inherited from superclasses. Sometimes, however, you will feel the need to add new methods to subclasses. In those situations you must just live with the inability to invoke one of the new methods when you have a reference to an object of the base type. You will only be able to invoke the new methods when you have an explicit reference to the subclass type in which the new methods are defined.

As an example, consider again the family of liquids. Up to this point you have been introduced to four members of the liquid family, Liquid, the base class, and subclass siblings Coffee, Milk, and Tea. Each of the subclasses overrides the default implementation of swirl(), defined in base class Liquid. So far every class in the family has the same interface, which is composed of just two methods: swirl() and gurgle(). Now suppose you want to be able to invoke a method on an object of class Tea that causes the object to inspect itself, and from the configuration of tea leaves floating in itself, describe the future of the person who is drinking the tea.

The ability to predict a person's future from the tea leaves left after they drink a cup of tea is not a general property of liquids. It is a property only of tea. If you added a readFuture() method to base class Liquid, that would imply that one can see the future by peering into any liquid. But this is not true of coffee. It is not true of milk. (It is probably not true of tea either, but for the sake of this illustration, assume it is.) Therefore, the best way to model this in your design is to add a readFuture() method to the Tea class only:

// In Source Packet in file inherit/ex5/Liquid.java

class Liquid {

 void swirl(boolean clockwise) {

 System.out.println("Liquid Swirling");

 }

}

// In Source Packet in file inherit/ex5/Tea.java

class Tea extends Liquid {

 void swirl(boolean clockwise) {

 System.out.println("Tea Swirling");

 }

 void readFuture() {

 System.out.println("Reading the future...");

 }

}

// In Source Packet in file inherit/ex5/Coffee.java

class Coffee extends Liquid {

 void swirl(boolean clockwise) {

 System.out.println("Coffee Swirling");

 }

}

// In Source Packet in file inherit/ex5/Milk.java

class Milk extends Liquid {

 void swirl(boolean clockwise) {

 System.out.println("Milk Swirling");

 }

}

Given the design represented by the code above, you will not be able to call readFuture() if you have a reference to an object of type Liquid, even if the actual object being referenced is type Tea. As demonstrated below, only if you have a reference of type Tea can you invoke the readFuture() method:

// In Source Packet in file inherit/ex5/Example5a.java

class Example5a {

 public static void main(String[] args) {

 // Create a Tea reference and a Tea object

 Tea tea = new Tea();

 // Create a Liquid reference and, in the spirit of

 // polymorphism, assign to it the same Tea object

 Liquid liq = tea;

 // Ask the tea object to read the future of its drinker

 tea.readFuture();

 // Attempt to ask the same tea object to read the future

 // again, but this time via the reference to Liquid.

 liq.readFuture(); // THIS WON'T COMPILE.

 }

}

The example above demonstrates the consequence of adding new methods to subclasses. The new methods can be called only when the type of the reference is the subclass. In this situation, however, it is a reasonable way to model the fortune telling behavior of tea, and the consequences of the design are acceptable.

When to Use instanceof
The fortune-telling behavior of Tea illustrates a situation in which you might want to use instanceof. If you have a reference to a Liquid and you want to swirl the liquid clockwise, you can use polymorphism because all liquids swirl:

// In Source Packet in file inherit/ex5/Example5b.java

class Example5b {

 public static void doSomethingWithALiquid(Liquid liq) {

 liq.swirl(true);

 }

 public static void main(String[] args) {

 // Create a Tea reference and a Tea object

 Tea tea = new Tea();

 doSomethingWithALiquid(tea);

 }

}

If you also want, if the liquid actually is tea, to read the drinker's future, you can't use polymorphism, because not all liquids can predict the future:

// In Source Packet in file inherit/ex5/Example5c.java

class Example5c {

 public static void doSomethingWithALiquid(Liquid liq) {

 liq.swirl(true);

 liq.readFuture(); // THIS WON'T COMPILE

 }

 public static void main(String[] args) {

 // Create a Tea reference and a Tea object

 Tea tea = new Tea();

 doSomethingWithALiquid(tea);

 }

}

In this case, you must use instanceof to determine whether the object really is tea, and if so, downcast the reference to type Tea, and invoke readFuture() on that:

// In Source Packet in file inherit/ex5/Example5d.java

class Example5d {

 public static void doSomethingWithALiquid(Liquid liq) {

 liq.swirl(true);

 if (liq instanceof Tea) {

 Tea tea = (Tea) liq;

 tea.readFuture();

 }

 }

 public static void main(String[] args) {

 // Create a Tea reference and a Tea object

 Tea tea = new Tea();

 doSomethingWithALiquid(tea);

 }

}

The process of converting the Liquid reference into a Tea reference is called "downcasting" because you are casting the reference "down" the inheritance hierarchy, from Liquid to Tea. This illustrates the kind of situation in which you should use instanceof. You have a base type reference, and if the object referred to by the base type reference really is a certain subclass, you want to invoke a method that only exists in that subclass.

Incidentally, Java ensures type-safety at run-time. If, for example, your program attempts at run-time to downcast to Tea a Liquid reference that actually refers to a Milk object, the Java Virtual Machine will throw a ClassCastException. Each time a cast is performed, the actual class of the object is checked to make sure the cast is valid.

Behind the Scenes

Statically Bound Instance Methods

The three special cases, mentioned above, in which Java performs static binding on instance methods are: o private methods o methods invoked with the super keyword o instance initialization methods

When you invoke a private method from another method, both methods must be defined in the same class. Although a method of the same signature as a private method can be declared in a subclass, a private method can't be overridden by a subclass. When you invoke a private method, the Java compiler knows precisely which class contains the method to invoke, because it must by definition be in the same class. Static binding is used so that the private method is invoked independent of the actual class of the object at run-time.

The super keyword, which will be described in detail later in this chapter, allows you to access a superclass's methods and fields from a subclass, even if they are overridden or hidden in the subclass. In the case of instance methods, static binding must be used. If a method is overridden in a subclass, dynamic binding would cause the subclass's version of the method to be invoked rather than the superclass's version. As with invocation of a private method, the compiler knows precisely which class contains the method to invoke when it is invoked with the super keyword. Static binding allows a superclass's version of an instance method to be invoked independent of the actual class of the object at run-time.

The Java compiler creates one instance initialization method for each constructor in the source for a class. This special kind of instance method is invoked only when an object is created. Like private methods and methods invoked with super, instance initialization methods are invoked using static binding. The details of this special kind of method will be described in Chapter 13.

For more information on static binding of instance methods, see the explanation of the invokespecial instruction in Chapter 25.

Interfaces

As illustrated in the previous chapter, one of the most important benefits of class extension is that you can take advantage of polymorphism. In an inheritance hierarchy, if class CoffeeCup extends class Cup, you can treat a CoffeeCup object as if it were a Cup object. Sometimes, however, it is difficult to get the polymorphism you want from the singly-inherited hierarchies you can build with class extension. To help you get more polymorphism than you can easily get with single- inheritance, Java supports a restricted form of multiple inheritance through a construct called the "interface." This chapter will discuss the motivation and the mechanics of the Java interface.

The Limitations of Single Inheritance

To reap the benefits of polymorphism through class extension, you must build a family of classes. In Java terminology, both classes and interfaces are "types." When you declare an interface, as when you declare a class, you establish a new type. In the remainder of this book, "type" will be used to refer to either classes or interfaces. Here, a "family of classes" is simply a family of types in which all the types are classes (none are interfaces). Thus, a family of classes is a group of related classes with a single base class from which all other classes in the family descend. Since every class in Java descends from Object, all Java classes are members of the Object family; however, you can still look at individual areas of an inheritance hierarchy as individual "families of classes." For example, class Cup and all its subclasses, as shown in Figure 4-1, form the Cup family. [bv: I believe I covered this already in a previous chapter.]

[image: image11.png]Cup

CoffeeCup

CoffeeMug

EspressoCup

Figure 4-1. The Cup family

Given a family of classes, polymorphism allows you to treat a subclass object as if it were a superclass object. For example, imagine you wanted to create a single method that could wash any kind of cup in your virtual cafe. You could declare a public method named wash() in the base class of the Cup family:

// In Source Packet in file interface/ex1/Cup.java

class Cup {

 public void wash() {

 System.out.println("Washing a Cup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex1/CoffeeCup.java

class CoffeeCup extends Cup {

 public void wash() {

 System.out.println("Washing a CoffeeCup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex1/CoffeeMug.java

class CoffeeMug extends CoffeeCup {

 public void wash() {

 System.out.println("Washing a CoffeeMug.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex1/EspressoCup.java

class EspressoCup extends CoffeeCup {

 public void wash() {

 System.out.println("Washing an EspressoCup.");

 // ...

}

 //...

}

Given this family of types, you could define a method that takes a Cup reference as follows:

// In Source Packet in file interface/ex1/VirtualCafe.java

class VirtualCafe {

 public static void prepareACup(Cup cup) {

 //...

 cup.wash();

 //...

 }

 //...

}

Using polymorphism, you could pass to the method a reference to any object that is-a Cup:

// In Source Packet in file interface/ex1/Example1.java

class Example1 {

 public static void main(String[] args) {

 Cup c = new Cup();

 CoffeeCup cc = new CoffeeCup();

 CoffeeMug cm = new CoffeeMug();

 EspressoCup ec = new EspressoCup();

 VirtualCafe.prepareACup(c);

 VirtualCafe.prepareACup(cc);

 VirtualCafe.prepareACup(cm);

 VirtualCafe.prepareACup(ec);

 }

}

Here you have all the benefits of polymorphism. The prepareACup() method can invoke wash() on many different objects, but it doesn't need to use instanceof. As a consequence, the code is easier to read and change. If later, you wanted to add class TeaCup to your program and wash TeaCup objects with prepareACup(), you only need to make TeaCup a subclass of Cup. You don't need to change the prepareACup() method itself.

This all works fine, but what if you wanted to wash a greater variety of objects with a single method? What if you wanted to have a method that can wash any kind of object for which washing makes sense-- any "washable" object? For example, besides washing cups, you might also want to wash a window, wash your car, or wash a dog. Since these objects don't seem to fit into the same family, you might end up using instanceof instead of polymorphism. For example, consider these classes:

// In Source Packet in file interface/ex2/Window.java

class Window {

 public void wash() {

 System.out.println("Washing a Window.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex2/Cup.java

class Cup {

 public void wash() {

 System.out.println("Washing a Cup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex2/CoffeeCup.java

class CoffeeCup extends Cup {

 public void wash() {

 System.out.println("Washing a CoffeeCup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex2/CoffeeMug.java

class CoffeeMug extends CoffeeCup {

 public void wash() {

 System.out.println("Washing a CoffeeMug.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex2/EspressoCup.java

class EspressoCup extends CoffeeCup {

 public void wash() {

 System.out.println("Washing an EspressoCup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex2/Car.java

class Car {

 public void wash() {

 System.out.println("Washing a Car.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex2/Dog.java

class Dog {

 public void wash() {

 System.out.println("Washing a Dog.");

 // ...

 }

 //...

}

Here, instead of having one family of classes for washable objects, you have four separate families: cups, dogs, cars, and windows. Each washable object in each family declares wash(), but because there is no common base class that declares wash(), you can't use polymorphism. To create a method that can wash any of these kinds of objects, your method would have to use instanceof:

// In Source Packet in file interface/ex2/Cleaner.java

class Cleaner {

 // (This doesn't use polymorphism)

 public static void cleanAnObject(Object obj) {

 // Perform any necessary processing of the

 // object before washing...

 // Wash the object

 if (obj instanceof Cup) {

 // (Here you are using polymorphism, but just

 // within the Cup family.)

 ((Cup) obj).wash();

 }

 else if (obj instanceof Dog) {

 ((Dog) obj).wash();

 }

 else if (obj instanceof Window) {

 ((Window) obj).wash();

 }

 else if (obj instanceof Car) {

 ((Car) obj).wash();

 }

 // Else the object doesn't get washed

 // Perform other processing on the object to

 // complete the cleaning process...

 }

}

This cleanAnObject()method will work, but it doesn't participate in the benefits of polymorphism. Most significantly, this code is less flexible than if it were able to take advantage of polymorphism. With the above code, you'd have to add another instanceof check if you want to add another kind of washable object, say Bicycle, to your program.

To improve this situation, you might decide to give cups, cars, windows, and dogs a common base class that declares the wash() method. This would allow you to get the full benefit of polymorphism in the cleanAnObject() method. Here, the four families--cups, cars, windows, and dogs--are combined into the WashableObject family:

// In Source Packet in file interface/ex3/WashableObject.java

abstract class WashableObject {

 public abstract void wash();

}

// In Source Packet in file interface/ex3/Window.java

class Window extends WashableObject {

 public void wash() {

 System.out.println("Washing a Window.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex3/Cup.java

class Cup extends WashableObject {

 public void wash() {

 System.out.println("Washing a Cup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex3/CoffeeCup.java

class CoffeeCup extends Cup {

 public void wash() {

 System.out.println("Washing a CoffeeCup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex3/CoffeeMug.java

class CoffeeMug extends CoffeeCup {

 public void wash() {

 System.out.println("Washing a CoffeeMug.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex3/EspressoCup.java

class EspressoCup extends CoffeeCup {

 public void wash() {

 System.out.println("Washing an EspressoCup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex3/Car.java

class Car extends WashableObject {

 public void wash() {

 System.out.println("Washing a Car.");

 //...

 }

 //...

}

// In Source Packet in file interface/ex3/Dog.java

class Dog extends WashableObject {

 public void wash() {

 System.out.println("Washing a Dog.");

 //...

 }

 //...

}

Given this WashableObject family, which is shown graphically in Figure 4-2, you can create a single method that uses polymorphism to wash any kind of washable object:

// In Source Packet in file interface/ex3/Cleaner.java

class Cleaner {

 public static void cleanAnObject(WashableObject wo) {

 //...

 wo.wash();

 //...

 }

}

[image: image12.png]WashaleObject

Window

Car

Dog

CoffeeCup

Figure 4-2. The WashableObject family

As this example demonstrates, it is possible to fit cups, windows, cars, and dogs all into the same family of classes; however, the resulting family, WashableObject, is not very intuitive and not very flexible.

As an example of this family's inflexibility, imagine that later you decide you want Dog to descend from Animal. You would have to make Animal descend from WashableObject. But what if, as is shown in Figure 4-4, you declared Cat and Fish as subclasses of Animal too? Is a Cat washable? Potentially, but you'd best let the Cat take care of that itself. And how do you wash a Fish? Although each of these washings are possible to imagine, they may not be a behavior you intend a Cat or Fish to exhibit. You are making Cats and Fish endure washing, when all you really want to do is keep the Dog clean. Given that you want Dogs to both to descend from Animal and be washable, however, you need to either make every Animal a WashableObject or every WashableObject an Animal. Here is the code for the Animal family:

// In Source Packet in file interface/ex5/WashableObject.java

abstract class WashableObject {

 public abstract void wash();

}

// In Source Packet in file interface/ex5/Animal.java

class Animal extends WashableObject {

 public void wash() {

 System.out.println("Washing an Animal.");

 //...

 }

 //...

}

// In Source Packet in file interface/ex5/Dog.java

class Dog extends Animal {

 public void wash() {

 System.out.println("Washing a Dog.");

 //...

 }

 //...

}

// In Source Packet in file interface/ex5/Cat.java

class Cat extends Animal {

 public void wash() {

 System.out.println("Washing a Cat.");

 //...

 }

 //...

}

// In Source Packet in file interface/ex5/Fish.java

class Fish extends Animal {

 public void wash() {

 System.out.println("Washing a Fish.");

 //...

 }

 //...

}

[image: image13.png][WashableObjed

Cat

Fish

Figure 4-4. Nervous cats and puzzled fish

The problem here is that you are using class extension not to model specialization of objects in the problem domain, but simply to get at polymorphism. In your problem domain, is it true that a Cup is-a WashableObject? What exactly is a washable object? What does one look like? Washable is an adjective, not a noun. It describes a behavior exhibited by objects, not an object itself. To get the benefits of polymorphism, you insert WashableObject into the inheritance hierarchy, but it doesn't fit very well.

Multiple Inheritance with Interfaces

Although class extension only allows single inheritance (each class can have at most one direct superclass), Java offers a special variation of multiple inheritance through the "interface." An interface is like an abstract class that has only public abstract methods and public static final fields. An interface (the Java construct) represents a pure interface (the object-oriented concept); it has no implementation.

Interfaces in Java allow you to get the benefits of polymorphism without requiring you to build a singly-inherited family of classes. Although a class can extend only one other class, it can "implement" multiple interfaces. Interfaces allow you to use families of classes to model what objects are (such as cups or animals) rather than what you plan to do with them (such as wash them). You can design a family of classes for cups, another for animals (including dogs), one for vehicles (including cars), one for parts of a building (including windows). Then each washable class can implement the Washable interface. Here is a potential declaration of the interface:

// In Source Packet in file interface/ex6/Washable.java

interface Washable {

 int IMPERVIOUS = 0;

 int RESISTENT = 1;

 int FRAGILE = 2;

 int EXPLOSIVE = 3;

 /**

 * returns true if the object needs to be washed

 */

 boolean needsWashing();

 /**

 * washes the object

 */

 void wash();

}

The methods declared in this interface are not explicitly declared public and abstract, because they are public and abstract by default. Likewise, the constants in Washable are not declared public, static, and final, because they are so by default.

A class Cup could implement the Washable interface as follows:

// In Source Packet in file interface/ex6/Cup.java

class Cup extends Object implements Washable {

public int getLevelOfFragility() {

return Washable.FRAGILE;

}

public boolean needsWashing() {

// No implementation yet...

// hard-code a return value so it will compile

return true;

}

public void wash() {

 System.out.println("Washing a Cup.");

 //...

}

//...

}

// In Source Packet in file interface/ex6/CoffeeCup.java

class CoffeeCup extends Cup {

public void wash() {

 System.out.println("Washing a CoffeeCup.");

 //...

}

//...

}

Class Cup declares that it implements interface Washable, so it must implement each method contained in that interface. If it doesn't, it must declare itself as abstract. (If class Cup didn't implement the methods contained in the interfaces and didn't declare itself abstract, it wouldn't compile.) In this case, it implements all methods declared in Washable. Class CoffeeCup, which extends class Cup, can either inherit or override Cup's implementation of the methods defined in Washable and Breakable. Figure 4-5 shows an inheritance hierarchy for this version of class Cup and CoffeeCup. [bv: Explain the UML diagram for interfaces.] Note that interfaces do not descend from class Object.

[image: image14.png]‘Washable
«interfacey

CoffeeCup

Figure 4-5. An inheritance hierarchy that includes interfaces

Although interfaces (like abstract classes) cannot be instantiated by themselves, you can create a variable to hold a reference to an interface type:

// In Source Packet in file interface/ex6/Example6a.java

class Example6a {

 public static void main(String[] args) {

 // OK to declare a variable as an interface type

 Washable wa;

 // Can't instantiate an interface by itself.

 wa = new Washable(); // THIS WON'T COMPILE

 }

}

Given an object variable of an interface type (such as Washable wa), you can assign a reference to an object of a class that implements the interface (such as class CoffeeCup):

// In Source Packet in file interface/ex6/Example6b.java

class Example6b {

 public static void main(String[] args) {

 Washable wa = new CoffeeCup();

 wa.wash();

 }

}

Thus, you can upcast a CoffeeCup reference not only to a Cup or an Object reference, but also to a Washable reference as well. On an interface reference such as wa above, you can invoke any method declared in the interface, as wash() was in this example.

The Interface Solution

Given the Washable interface, you could overcome the difficulties encountered earlier in writing cleanAnObject(). Here is how you could declare the classes and the interface:

// In Source Packet in file interface/ex7/Washable.java

interface Washable {

 void wash();

}

// In Source Packet in file interface/ex7/Window.java

class Window implements Washable {

 public void wash() {

 System.out.println("Washing a Window.");

 //...

 }

 //...

}

// In Source Packet in file interface/ex7/Cup.java

class Cup implements Washable {

 public void wash() {

 System.out.println("Washing a Cup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex7/CoffeeCup.java

class CoffeeCup extends Cup {

 public void wash() {

 System.out.println("Washing a CoffeeCup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex7/CoffeeMug.java

class CoffeeMug extends CoffeeCup {

 public void wash() {

 System.out.println("Washing a CoffeeMug.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex7/EspressoCup.java

class EspressoCup extends CoffeeCup {

 public void wash() {

 System.out.println("Washing an EspressoCup.");

 // ...

 }

 //...

}

// In Source Packet in file interface/ex7/Car.java

class Car implements Washable {

 public void wash() {

 System.out.println("Washing a Car.");

 //...

 }

 //...

}

// In Source Packet in file interface/ex7/Animal.java

class Animal {

 //...

}

// In Source Packet in file interface/ex7/Dog.java

class Dog extends Animal implements Washable {

 public void wash() {

 System.out.println("Washing a Dog.");

 //...

 }

 //...

}

// In Source Packet in file interface/ex7/Cat.java

class Cat extends Animal {

 //...

}

// In Source Packet in file interface/ex7/Fish.java

class Fish extends Animal {

 //...

}

The inheritance hierarchy for these classes is shown in Figure 4-6. Given these definitions for cups, animals, windows, and cars, you could once again get the benefits of polymorphism when writing method cleanAnObject():

// In Source Packet in file interface/ex7/Cleaner.java

class Cleaner {

 public static void cleanAnObject(Washable washMe) {

 //...

 washMe.wash();

 //...

 }

}

[image: image15.png]Object

WashahleObject

Sinterfices

cup

CoffeaCup

Fih

cat

Dog

Figure 4-6. The interface solution

Interfaces allow you to get the benefits of polymorphism without requiring that you fit everything into one singly-inherited family of classes. In the examples above, the Washable interface defines a standard way to do washing, and any class can implement it. Because of interfaces, you can use class extension to model what objects are. You can use interface implementation to get polymorphism based purely on what an object does. Any desired polymorphism that class extension doesn't produce, you can get with interface implementation.

Implementing Multiple Interfaces

[bv: have one example of this.]

Interfaces Extending Interfaces

Similar to classes, you can build up inheritance hierarchies of interfaces by using the extends keyword, as in:

// In Source Packet in file interface/ex8/Washable.java

interface Washable {

void wash();

}

// In Source Packet in file interface/ex8/Soakable.java

interface Soakable extends Washable {

void soak();

}

In this example, interface Soakable extends interface Washable. Consequently, Soakable inherits all the members of Washable. A class that implements Soakable must provide bodies for all the methods declared in or inherited by Soakable, wash() and soak(), or be declared abstract. Note that only interfaces can "extend" other interfaces. Classes can't extend interfaces, they can only implement interfaces.

Soakable inherits member wash()from its superinterface. Similar to "subclass" and "superclass," interfaces in an inheritance hierarchy can be called "subinterface" and "superinterface." To refer to either classes or interfaces, you can say "subtype" and "supertype." As with subclass and superclass, you can use "direct" to indicate that a type or interface is a direct descendant or ancestor of another type or interface, as in "direct superinterface" or "direct subtype."

To extend the previous example further, here are a few more interfaces:

// In Source Packet in file interface/ex8/Scrubable.java

interface Scrubable extends Washable {

void scrub();

}

// In Source Packet in file interface/ex8/BubbleBathable.java

interface BubbleBathable extends Soakable, Scrubable {

void takeABubbleBath();

}

In this example, Washable, Soakable, and Scrubable are all superinterfaces of BubbleBathable. (Note that BubbleBathable extends two direct superinterfaces. Just as classes can implement multiple interfaces, interfaces can extend multiple interfaces.) Classes that implement BubbleBathable must therefore provide bodies for methods declared in Washable, Soakable, Scrubable, and BubbleBathable, or be declared abstract. Figure 4-7 shows the inheritance hierarchy for this family of interfaces.

[image: image16.png]‘Washable

‘ Soakable ‘ Scrubable

BubbleBathable

Figure 4-7. Interfaces can extend other interfaces

Using instanceof with Interfaces

Given a reference to an object, you can find out if a particular interface is a superinterface of that object's class by using instanceof. For example, the washIfPossible() method, shown below, uses instanceof to determine whether an object is a subtype of the Washable interface:

// In Source Packet in file interface/ex9/Example9.java

class Example9 {

 public static void washIfPossible(Object o) {

 if (o instanceof Washable) {

 // Washable is a superinterface of the

 // object's class

 ((Washable) o).wash();

 }

 else {

 System.out.println("Can't wash this.");

 }

 }

 public static void main(String[] args) {

 washIfPossible(new Cup());

 washIfPossible(new CoffeeCup());

 washIfPossible(new CoffeeMug());

 washIfPossible(new EspressoCup());

 washIfPossible(new Car());

 washIfPossible(new Animal());

 washIfPossible(new Dog());

 washIfPossible(new Cat());

 washIfPossible(new Fish());

 washIfPossible(new Window());

 }

}

Alternatively, you can obtain a list of all the interfaces an object's class implements using the java.lang.Class object. This will be described in the chapter on Reflections, Chapter 19. These mechanisms allow you to query an object to find out what methods you can invoke on it, or "what it can do for you."

Name Conflicts

Multiple inheritance brings with it the potential for name conflicts. If, for example, the Soakable and Scrubable interfaces both declare a method named dryOff(), classes that implement both Soakable and Scrubable would inherit dryOff() twice. If dryOff() has different signatures in both interfaces, then the class would inherit two overloaded names, and would have to define implementations for both, or else declare itself as abstract:

// In Source Packet in file interface/ex10/Washable.java

interface Washable {

 void wash();

}

// In Source Packet in file interface/ex10/Soakable.java

interface Soakable extends Washable {

 void soak();

 void dryOff();

}

// In Source Packet in file interface/ex10/Scrubable.java

interface Scrubable extends Washable {

 void scrub();

 void dryOff(boolean withTowel);

}

// In Source Packet in file interface/ex10/Cup.java

class Cup implements Soakable, Scrubable {

 // implement Soakable's dryOff()

 public void dryOff() {

 // ...

 }

 // implement Scrubable's dryOff()

 public void dryOff(boolean withTowel) {

 //...

 }

 public void wash() {

 //...

 }

 public void soak() {

 //...

 }

 public void scrub() {

 //...

 }

 //...

}

On the other hand, if the dryOff() methods in Soakable and Scrubable have the same signature and return value, then Cup need only implement one dryOff() method:

// In Source Packet in file interface/ex11/Washable.java

interface Washable {

 void wash();

}

// In Source Packet in file interface/ex11/Soakable.java

interface Soakable extends Washable {

 void soak();

 void dryOff();

}

// In Source Packet in file interface/ex11/Scrubable.java

interface Scrubable extends Washable {

 void scrub();

 void dryOff();

}

// In Source Packet in file interface/ex11/Cup.java

class Cup implements Soakable, Scrubable {

 // Implement both Soakable's and Scrubable's

 // dryOff() method with one method body

 public void dryOff() {

 // ...

 }

 public void wash() {

 //...

 }

 public void soak() {

 //...

 }

 public void scrub() {

 //...

 }

 //...

}

If the dryOff() methods declared in Soakable and Scrubable have the same signature but different return types, they couldn't be implemented by the same class.

// In Source Packet in file interface/ex12/Washable.java

interface Washable {

 void wash();

}

// In Source Packet in file interface/ex12/Soakable.java

interface Soakable extends Washable {

 void soak();

 void dryOff();

}

// In Source Packet in file interface/ex12/Scrubable.java

interface Scrubable extends Washable {

 void scrub();

 boolean dryOff();

}

// In Source Packet in file interface/ex12/Cup.java

// THIS WON'T COMPILE, BECAUSE NO CLASS CAN

// IMPLEMENT BOTH Soakable AND Scrubable

class Cup implements Soakable, Scrubable {

 //...

}

If both Soakable and Scrubable declared two constants with the same name, that in itself would never prevent a class from implementing both interfaces. The like-named constants can be of different values and even different types. To refer to one of the constants from with the class, however, you must use the qualified name of the field (the name of the interface, a dot, and the name of the field):

// In Source Packet in file interface/ex13/Washable.java

interface Washable {

 void wash();

}

// In Source Packet in file interface/ex13/Soakable.java

interface Soakable extends Washable {

 int BUBBLE_TOLERANCE = 4;

 void soak();

 void dryOff();

}

// In Source Packet in file interface/ex13/Scrubable.java

interface Scrubable extends Washable {

 double BUBBLE_TOLERANCE = 0.001;

 void scrub();

 void dryOff();

}

// In Source Packet in file interface/ex13/Cup.java

class Cup implements Soakable, Scrubable {

 // Here, can't just say BUBBLE_TOLERANCE. Must

 // use the qualified name.

 public void dryOff() {

 int tol = Soakable.BUBBLE_TOLERANCE;

 double doubleBubble = Scrubable.BUBBLE_TOLERANCE;

 // ...

 }

 public void wash() {

 //...

 }

 public void soak() {

 //...

 }

 public void scrub() {

 //...

 }

 //...

}

Interfaces versus Plain-Old Multiple Inheritance

Interfaces Don't Have the Diamond Problem

Interfaces and Composition

Here talk about the "weight" of plain-old multiple inheritance using the washing machine example. Talk about the advantages of using interfaces to get polymorphism and composition to get reuse.

Interface Naming Conventions

The style conventions proposed by the Java Language Specification encourage you to leave off redundant modifiers in member declarations of interfaces. (Note that this is not an issue with classes, because classes can't have redundant modifiers.)

The Java Language Specification's recommended naming conventions for interfaces are either a noun or noun phrase, if you are using the interface to represent an abstract base class, or an adjective, if you are using the interface to represent a behavior. (Here, both Washable and Breakable are being used to represent a behavior, so their names are adjectives. Using an interface to represent an abstract base class will be discussed later in this chapter.) The capitalization of interface names follows that of classes: the first letter of each word should be upper case, the rest lower case.

Interface Implementation Strategies

An interface can have several possible implementations, each appropriate for different classes of objects or different situations. The implementations can vary in the algorithm or data structures used, yielding, for example, some methods that are faster but use a lot of memory and others that are slower but use memory more conservatively. Sometimes a method declared in an interface simply has a slightly different meaning for the various classes that implement the interface. For example, you might wash an object differently depending upon what the object is. Some ways you could the wash an object are: with soap, water, and a sponge; with sudsy water and a squeegee; with glass cleaner and a paper towel; or with a machine. The appropriate way for a class to implement the wash() method of the Washable interface depends upon that class's unique nature or circumstances.

If you are writing a class that has superinterfaces, you must implement all methods defined in the superinterfaces, or declare the class abstract. There are three approaches you can take to implement those methods:

1. implement them directly,

2. inherit an implementation, or

3. forward the call to another class's implementation.

If a class has a unique manner of implementing an interface, it can take the first approach and implement it directly. For example, if there is a way to wash cups that is unique to cups, class Cup could declare a wash() method that washes in that unique way. Subclasses of Cup would then have the option of inheriting Cup's implementation (the second approach) or overriding it:

// In Source Packet in file interface/ex14/Washable.java

interface Washable {

void wash();

}

// In Source Packet in file interface/ex14/Cup.java

class Cup implements Washable {

 // Approach one, implement wash() directly

 public void wash() {

 // Sponge off with soap and water.

 // Rinse thoroughly.

 }

 //...

}

// In Source Packet in file interface/ex14/CoffeeCup.java

class CoffeeCup extends Cup {

 // Approach two, don't explicitly declare a

 // wash() method. Inherit Cup's implementation

 // of wash().

 //...

}

Sometimes a single implementation of an interface may make sense for different objects that aren't in the same family of classes. As an example, imagine you wanted to be able to add properties to some of your classes, where a property is a value string indexed by a key string. If a particular property's key string were "color", for example, its value string could be "blue". You want to be able to add properties, remove properties, and lookup a value given a key. Because this behavior is something you'd like to be able to apply to any kind of object, an interface is called for:

// In Source Packet in file interface/ex15/Propertied.java

interface Propertied {

 void setProperty(String key, String val);

 void removeProperty(String key);

 String getProperty(String key);

}

You may wish to add properties to both cups and cars, for example, and use the same mechanisms for managing the data. Instead of repeating the same implementation of setProperty(), removeProperty(), and getProperty() in both the Cup and Car classes, you could create a PropertyManager class that implements the Propertied interface:

// In Source Packet in file interface/ex15/PropertyManager.java

class PropertyManager implements Propertied {

 private java.util.Hashtable props = new java.util.Hashtable();

 public void setProperty(String key, String val) {

 props.put(key, val);

 }

 public void removeProperty(String key) {

 props.remove(key);

 }

 public String getProperty(String key){

 // Returns null if property not found

 return (String) props.get(key);

 }

}

The PropertyManager class represents one way to implement the Propertied interface. This implementation uses the Hashtable class from the java.util library. (The name java.util.Hashtable is Hashtable's fully qualified name. The details of fully qualified names are described in the next chapter.) Note that this class uses composition. Class PropertyManager has-a Hashtable.

Cup and Car objects could each contain a PropertyManager object and then forward calls to their PropertyManager. (This is the third approach from the list above.):

// In Source Packet in file interface/ex15/Cup.java

class Cup implements Propertied {

 private PropertyManager propMgr = new PropertyManager();

 public void setProperty(String key, String val) {

 propMgr.setProperty(key, val);

 }

 public void removeProperty(String key) {

 propMgr.removeProperty(key);

 }

 public String getProperty(String key){

 // Returns null if property not found

 return (String) propMgr.getProperty(key);

 }

 //...

}

// In Source Packet in file interface/ex15/Car.java

class Car implements Propertied {

 private PropertyManager propMgr = new PropertyManager();

 public void setProperty(String key, String val) {

 propMgr.setProperty(key, val);

 }

 public void removeProperty(String key) {

 propMgr.removeProperty(key);

 }

 public String getProperty(String key){

 // Returns null if property not found

 return (String) propMgr.getProperty(key);

 }

 //...

}

Any other classes that you later decide could use a Hashtable for implementing the Propertied interface could contain a PropertyManager object and forward calls to it. If you later encounter classes for which it doesn't make sense to use a Hashtable, you could write another class, perhaps LinkedListProperyManager, that implements Propertied in a different way. Those classes for which a Hashtable doesn't make sense could contain a LinkedListProperyManager object and forward calls to it.

Using Interfaces as Abstract Base Classes

As mentioned before, the Java Language Specification suggests two conventions for naming interfaces. If the interface represents a behavior, its name should be an adjective. The interfaces given so far as examples in this chapter, Washable, Breakable, and Propertied fall into this category. They represent pure behavior, and their names are adjectives. The other suggested naming convention is for interfaces that serve as abstract base classes. In this case, interfaces should be given names that are nouns or noun phrases, just like classes.

As described in the previous chapter, you can declare classes abstract. If you have a class that is conceptual only--not one that represents actual objects, but one that represents a category of types--you should declare that class abstract. An abstract class cannot be instantiated. Instead of serving as a blueprint for instantiating objects, an abstract class serves as a base class in a family of types.

For example, you could decide that in your virtual cafe, you have coffee cups and tea cups. In your inheritance hierarchy, you could define an abstract class Cup that serves as a base class for both CoffeeCup and TeaCup. The abstract Cup class could define abstract methods that both CoffeeCup and TeaCup must implement:

// In Source Packet in file interface/ex16/Cup.java

abstract class Cup {

 public abstract void add(int amount);

 public abstract int removeOneSip(int sipSize);

 public abstract int spillEntireContents();

}

// In Source Packet in file interface/ex16/CoffeeCup.java

class CoffeeCup extends Cup {

 public void add(int amount) {

 //...

 }

 public int removeOneSip(int sipSize) {

 //...

 return 0;

 }

 public int spillEntireContents() {

 //...

 return 0;

 }

 //...

}

// In Source Packet in file interface/ex16/TeaCup.java

class TeaCup extends Cup {

 public void add(int amount) {

 //...

 }

 public int removeOneSip(int sipSize) {

 //...

 return 0;

 }

 public int spillEntireContents() {

 //...

 return 0;

 }

 //...

}

Given this inheritance hierarchy, shown graphically in Figure 4-8, you could not instantiate a Cup object, but you could use a Cup reference to send messages to a CoffeeCup or TeaCup object. Given a Cup reference that refers to a CoffeeCup or TeaCup, you could invoke add(), releaseOneSip(), or spillEntireContents() on it. The implementation of those methods that actually gets invoked at run-time will depend upon the actual class of the object referred to by the Cup reference.

[image: image17.png]Object

Cup
«abstract»

CoffeeCup

TeaCup

Figure 4-8. Cup as an abstract base class

Since this class Cup contains only public abstract methods, it could alternatively be declared as an interface:

// In Source Packet in file interface/ex17/Cup.java

interface Cup {

 void add(int amount);

 int removeOneSip(int sipSize);

 int spillEntireContents();

}

// In Source Packet in file interface/ex17/CoffeeCup.java

class CoffeeCup implements Cup {

 public void add(int amount) {

 //...

 }

 public int removeOneSip(int sipSize) {

 //...

 return 0;

 }

 public int spillEntireContents() {

 //...

 return 0;

 }

 //...

}

// In Source Packet in file interface/ex17/TeaCup.java

class TeaCup implements Cup {

 public void add(int amount) {

 //...

 }

 public int removeOneSip(int sipSize) {

 //...

 return 0;

 }

 public int spillEntireContents() {

 //...

 return 0;

 }

 //...

}

Here you are using an interface to represent an abstract base class. As suggested by the Java Language Specification, the name of the class, Cup, is a noun. The inheritance hierarchy for this is shown in Figure 4-9.

[image: image18.png]Object

Cup
«interface»

CoffeeCup

Figure 4-9. Cup as an interface

In general, if you have an abstract base class that declares only public abstract methods and public static final fields, you may as well make it an interface. Because an abstract class is restricted to single inheritance, but an interface can be multiply inherited, an interface is more flexible than an abstract class. If you want to have any default implementation of methods, or non-public members in the base class, however, it must be an abstract class.

Objects and Java by Bill Venners
Chapter 8:
Cloning, Collections, and Inner Classes
Objects and Java | Contents | Previous | Next
Although the previous chapter covered object initialization in great detail, it didn't quite cover all ways to initialize objects in Java, because it didn't cover all ways to create objects in Java. Aside from the new operator, which was the focus of the last chapter, Java offers two other ways to create objects: clone(), which is described in this chapter, and newInstance(), which is described in Part IV.

The newInstance() method, a member of class Class, is most often used in the context of class loaders and dynamic program extension. The clone() method, a member of class Object, is Java's mechanism for making copies of objects.

The clone() Method

In Java, the way to make an identical copy of an object is to invoke clone() on that object. When you invoke clone(), it should either:

1. return an Object reference to a copy of the object upon which it is invoked, or

2. throw CloneNotSupportedException

Because clone() is declared in class Object, it is inherited by every Java object. Object's implementation of clone() does one of two things, depending upon whether or not the object implements the Cloneable interface. If the object doesn't implement the Cloneable interface, Object's implementation of clone() throws a CloneNotSupportedException. Otherwise, it creates a new instance of the object, with all the fields initialized to values identical to the object being cloned, and returns a reference to the new object.

The Cloneable interface doesn't have any members. It is an empty interface, used only to indicate cloning is supported by a class. Class Object doesn't implement Cloneable. To enable cloning on a class of objects, the class of the object itself, or one of its superclasses other than Object, must implement the Cloneable interface.

In class Object, the clone() method is declared protected. If all you do is implement Cloneable, only subclasses and members of the same package will be able to invoke clone() on the object. To enable any class in any package to access the clone() method, you'll have to override it and declare it public, as is done below. (When you override a method, you can make it less private, but not more private. Here, the protected clone() method in Object is being overridden as a public method.)

// In Source Packet in file clone/ex1/CoffeeCup.java

class CoffeeCup implements Cloneable {

 private int innerCoffee;

 public Object clone() {

 try {

 return super.clone();

 }

 catch (CloneNotSupportedException e) {

 // This should never happen

 throw new InternalError(e.toString());

 }

 }

 public void add(int amount) {

 innerCoffee += amount;

 }

 public int releaseOneSip(int sipSize) {

 int sip = sipSize;

 if (innerCoffee < sipSize) {

 sip = innerCoffee;

 }

 innerCoffee -= sip;

 return sip;

 }

 public int spillEntireContents() {

 int all = innerCoffee;

 innerCoffee = 0;

 return all;

 }

}

You could make a copy of this CoffeeCup class, which implements Cloneable, as follows:

// In Source Packet in file clone/ex1/Example1.java

class Example1 {

 public static void main(String[] args) {

 CoffeeCup original = new CoffeeCup();

 original.add(75); // Original now contains 75 ml of coffee

 CoffeeCup copy = (CoffeeCup) original.clone();

 copy.releaseOneSip(25); // Copy now contains 50 ml of coffee

 // Figure 15-1 shows the heap at this point in the program

 int origAmount = original.spillEntireContents();

 int copyAmount = copy.spillEntireContents();

 System.out.println("Original has " + origAmount

 + " ml of coffee.");

 System.out.println("Copy has " + copyAmount

 + " ml of coffee.");

 }

}

In this example, a new CoffeeCup object is instantiated and given an initial 75 ml of coffee. The clone() method is then invoked on the CoffeeCup object. Because class CoffeeCup declares a clone() method, that method is executed when clone() is invoked on the CoffeeCup object referred to by the original reference. CoffeeCup's clone() does just one thing: invoke the clone() method in CoffeeCup's superclass, Object. The first thing Object's clone() does is check to see whether the object's class implements the Cloneable interface. This test passes because CoffeeCup, the object's class, does indeed implement Cloneable. The clone() method then creates a new instance of CoffeeCup, and initializes its one field, innerCoffee, to 75--the same value it has in the CoffeeCup object being cloned. Object's clone()returns a reference to the new object, which is then returned by CoffeeCup's clone().

The reference returned by clone() refers to a CoffeeCup object, but the reference itself is of type Object. The code above downcasts the returned reference from Object to CoffeeCup before assigning it to local variable copy. At this point, both CoffeeCup objects-- original and copy--contain 75 ml of coffee. Finally, 25 ml is removed from the copy, so it ends up with only 50 ml of coffee. A graphical representation of the result inside the Java Virtual Machine of executing the first four statements in main() is shown in Figure 15-1. (As mentioned in the last chapter, the native pointer to class information shown here is just one potential way a Java Virtual Machine could connect instance data to its class information.)

[image: image19.png]AdJava Stack

original

copy’

/\

The Heap

innerCoffee: 75
class info pir

innerCoffee: 50
class info pir

Figure 15-1. Cloning a CoffeeCup.

CoffeeCup's clone() implementation surrounds the call to Object's clone implementation with a try block so it can catch CloneNotSupportedException. This exception should never actually be thrown by Object's clone(), because in this case, CoffeeCup correctly implements Cloneable. If CoffeeCup's clone() didn't explicitly catch it, however, then clone() would have to declare in a throws clause that it may throw CloneNotSupportedException. This would force any method invoking clone() on a CoffeeCup object to deal with the exception, either by explicitly catching it or declaring it in their own throws clause. Thus, CoffeeCup's clone() catches CloneNotSupportedException to make it simpler for other methods to invoke clone() on a CoffeeCup.

Cloning Objects that Contain Other Objects

If you wish to enable cloning of an object that includes object references as part of its instance data, you may have to do more work in clone() than just calling super.clone(). Clone should return an independent copy of the object. Object's clone() will copy the value of each instance variable from the original object into the corresponding instance variables of the copy object. If one of those variables is an object reference, the copy object will get a duplicate reference to the same object.

As an example, consider this version of CoffeeCup, in which the innerCoffee field has been upgraded from a mere int to a full fledged object reference:

// In Source Packet in file clone/ex2/CoffeeCup.java

class CoffeeCup implements Cloneable {

 private Coffee innerCoffee = new Coffee(0);

 public Object clone() {

 try {

 return super.clone();

 }

 catch (CloneNotSupportedException e) {

 // This should never happen

 throw new InternalError(e.toString());

 }

 }

 public void add(int amount) {

 innerCoffee.add(amount);

 }

 public int releaseOneSip(int sipSize) {

 return innerCoffee.remove(sipSize);

 }

 public int spillEntireContents() {

 return innerCoffee.removeAll();

 }

}

// In Source Packet in file clone/ex2/Coffee.java

public class Coffee implements Cloneable {

 private int volume; // Volume in milliliters

 Coffee(int volume) {

 this.volume = volume;

 }

 public Object clone() {

 try {

 return super.clone();

 }

 catch (CloneNotSupportedException e) {

 // This should never happen

 throw new InternalError(e.toString());

 }

 }

 public void add(int amount) {

 volume += amount;

 }

 public int remove(int amount) {

 int v = amount;

 if (volume < amount) {

 v = volume;

 }

 volume -= v;

 return v;

 }

 public int removeAll() {

 int all = volume;

 volume = 0;

 return all;

 }

}

Given these declarations of CoffeeCup and Coffee, there would be a surprise waiting for any method that attempts to clone a CoffeeCup object:

// In Source Packet in file clone/ex2/Example2.java

class Example2 {

 public static void main(String[] args) {

 CoffeeCup original = new CoffeeCup();

 original.add(75); // Original now contains 75 ml of coffee

 CoffeeCup copy = (CoffeeCup) original.clone();

 copy.releaseOneSip(25);

 // Copy now contains 50 ml of coffee.

 // Unfortunately, so does original.

 // Figure 15-2 shows the heap at this point in the program

 int origAmount = original.spillEntireContents();

 int copyAmount = copy.spillEntireContents();

 System.out.println("Original has " + origAmount

 + " ml of coffee.");

 System.out.println("Copy has " + copyAmount

 + " ml of coffee.");

 }

}

Here, when releaseOneSip() is invoked on copy with a parameter of 25 ml, that amount of coffee is correctly removed from the CoffeeCup object referenced by copy. The trouble is that 25 ml of coffee is also removed from the cup referenced by original. The reason is that both the original and copy objects contain a reference to the same Coffee object. A graphical representation of the result of these statements is shown in Figure 15-2.

[image: image20.png]AdJava Stack

The Heap

innerCoffee

class info pir

original

volume: 50

copy.

class info pir

.

™~

A

innerCoffee

class info pir

Figure 15-2. Incorrect cloning of a CoffeeCup that contains object references.

To rectify this situation, you need to modify CoffeeCup's clone() method:

// In Source Packet in file clone/ex3/CoffeeCup.java

class CoffeeCup implements Cloneable {

 private Coffee innerCoffee = new Coffee(0);

 public Object clone() {

 CoffeeCup copyCup = null;

 try {

 copyCup = (CoffeeCup) super.clone();

 }

 catch (CloneNotSupportedException e) {

 // this should never happen

 throw new InternalError(e.toString());

 }

 copyCup.innerCoffee = (Coffee) innerCoffee.clone();

 return copyCup;

 }

 public void add(int amount) {

 innerCoffee.add(amount);

 }

 public int releaseOneSip(int sipSize) {

 return innerCoffee.remove(sipSize);

 }

 public int spillEntireContents() {

 return innerCoffee.removeAll();

 }

}

In this version of clone(), Object's clone() is invoked as before. But instead of simply returning the reference to the new CoffeeCup object created by Object's clone(), the new CoffeeCup object is modified before it is returned. First, the Coffee object referenced by innerCoffee is cloned. A reference to the cloned Coffee object is then stored in the innerCoffee variable of the cloned CoffeeCup object . At this point, the original object and the clone refer to their own Coffee objects, but those Coffee objects are exact duplicates of each other.

If you now performed the same statements on this version of CoffeeCup, you would once again have the expected behavior:

// In Source Packet in file clone/ex3/Example3.java

class Example3 {

 public static void main(String[] args) {

 CoffeeCup original = new CoffeeCup();

 original.add(75); // original now contains 75 ml of coffee

 CoffeeCup copy = (CoffeeCup) original.clone();

 copy.releaseOneSip(25);

 // Copy now contains 50 ml of coffee.

 // Original still has 75 ml of coffee.

 // Figure 15-3 shows the heap at this point in the program

 int origAmount = original.spillEntireContents();

 int copyAmount = copy.spillEntireContents();

 System.out.println("Original has " + origAmount

 + " ml of coffee.");

 System.out.println("Copy has " + copyAmount

 + " ml of coffee.");

 }

}

Because the CoffeeCup objects referenced by original and copy each have their own Coffee objects, when copy's was reduced by 25 ml, original's wasn't affected. A graphical representation of the result of these statements is shown in Figure 15-3.

[image: image21.png]AJava Stack

The Heap

nnerCoffee

class info pir

original

volume: 75

copy.

class info pir

N

‘nnerCoffee

class info pir

N

volume: 50

class info pir

Figure 15-3. Proper cloning of a CoffeeCup that contains object references.

These examples demonstrate the customary approach to writing clone(). The first thing to do in any clone() method (besides Object's) is invoke super.clone(). This will cause Object's implementation of clone() to be executed first. This scheme is similar to that of constructors, in which an invocation of the superclass's constructor is always executed first. Object's clone() will create a new instance of the class and copy the values contained in the original's instance data to the new object's instance data. Catching CloneNotSupportedException is also a good idea, to make calling clone() on that class of objects simpler to code.

When super.clone() returns, a clone() method should make clones of any mutable objects referenced by its instance variables, and assign these clones to the instance variables of the copy. A mutable object is one whose state can change over the course of its lifetime. An object whose state can't change is immutable.

An example of an immutable object is String. You must give a value to a String when you create it. Once created, a String's value can't change over the lifetime of the String object. The same is true for the wrapper objects Integer, Float, and so on. You assign them a value when they are created, and there is no way to change it for the remainder of their lifetimes.

The real trouble with the clone() method shown above that didn't clone Coffee was that Coffee is mutable. When the state of the Coffee object changed (volume changed from 75 to 50), both CoffeeCup objects saw their own internal state change. Had CoffeeCup included an instance variable of type String, you wouldn't have had to clone it because Strings are immutable. (In fact, you couldn't have cloned it, because String doesn't implement Cloneable. Since Strings are immutable, it doesn't make sense to clone them.)

Disallowing Cloning

Java's cloning mechanism enables you to allow cloning, allow cloning conditionally, or forbid cloning altogether. If you wish to completely forbid cloning, you have a few different approaches to choose from. To decide which way to forbid cloning upon a particular class of objects, you must know something about the class's superclasses.

If none of the superclasses implement Cloneable or override Object's clone() method, you can prevent cloning of objects of that class quite easily. Simply don't implement the Cloneable interface and don't override the clone() method in that class. The class will inherit Object's clone() implementation, which will throw CloneNotSupportedException anytime clone() is invoked on objects of that class. All the classes shown as examples in this book prior to the CoffeeCup class declared immediately above used this method of preventing cloning. By doing nothing, they disallowed cloning. Thus, forbidding cloning is the default behavior for an object.

In cases where a superclass already implements Cloneable, and you don't want the subclass to be cloned, you'll have to override clone() in the subclass and throw a CloneNotSupportedException yourself. In this case, instances of the superclass will be clonable, but instances of the subclass will not.

Clone and the Copy Constructor

For those of you who know C++, Java's clone() method is what happened to C++'s copy constructor. For those of you who don't know C++, a copy constructor is one which takes a single parameter of the same type of the class. In the body of the copy constructor, you have to copy all values from the object passed as a parameter to the object under construction. Like Java's clone() method, in a C++ copy constructor, you should allocate new memory for objects referenced (or pointed to) from instance (member) variables. For example, a copy constructor for class CoffeeCup would be:

// In Source Packet in file clone/ex4/CoffeeCup.java

// Copy constructors are not the Java way...

class CoffeeCup {

 private int innerCoffee;

 public CoffeeCup(CoffeeCup cup) {

 innerCoffee = cup.innerCoffee;

 }

 //...

}

One of the primary uses of the copy constructor in C++ is to pass objects by value. The copy constructor is used to create a copy of an object that is passed by value to a function. This is not an issue in Java, because all objects in Java programs are passed by reference.

If you are a C++ programmer and feel the urge to write a copy constructor in a Java class, STOP! Close your eyes. Take a few deep breaths. Then--when you feel your ready--open your eyes, implement Cloneable and write clone(). It will be OK.

Objects and Java by Bill Venners
Chapter 9:
Exceptions
Objects and Java | Contents | Previous | Next
As mentioned in the previous chapter, exceptions are the customary way in Java to indicate to a calling method that an abnormal condition occurred. This chapter explains how exceptions work and gives advice on their use.

Exception Classes

When a method encounters an abnormal condition (an exception condition) that it can't handle itself, it may throw an exception. Throwing an exception is like throwing a beeping, flashing red ball to indicate there is a problem that can't be handled where it occurred. Somewhere, you hope, this ball will be caught and the problem handled. Exceptions are caught by handlers positioned along the thread's method invocation stack. If the calling method isn't prepared to catch the exception, then it throws the exception up to its calling method, and so on. If one of the threads of your program throws an exception that isn't caught by any method along the method invocation stack, that thread will expire. When you program in Java, you must position catchers strategically, so your program will catch and handle all exceptions that shouldn't result in a dead thread.

In Java, exceptions are objects. When you throw an exception, you throw an object. You can't throw just any object as an exception, however, only objects whose class descends from Throwable. Throwable serves as the base class for an entire family of classes, declared in java.lang, that your program can instantiate and throw. A small part of this family is shown in Figure 9-1.

[image: image22.png]package javalang;

<=
<

Figure 9-1. A partial view of the Throwable family.

As you can see in Figure 9-1, Throwable has two direct subclasses, Exception and Error. Exceptions (members of the Exception family) are thrown for abnormal conditions that can often be handled by some catcher, though they may not be caught and could therefore result in a dead thread. Errors (members of the Error family) are usually thrown for more serious problems, such as OutOfMemoryError, that may not be so easy to handle. In general, code you write should throw only exceptions, not errors. Errors are usually thrown by the methods of the Java API, or by the Java Virtual Machine itself.

In addition to throwing objects whose class is declared in java.lang, you can throw objects of your own design. To create your own class of throwable objects, you need only declare it as a subclass of some member of the Throwable family. In general, however, the throwable classes you define should extend class Exception. They should be "exceptions." The reasoning behind this rule will be explained later in this chapter.

Whether you use an existing exception class from java.lang or create one of your own depends upon the situation. In some cases, a class from java.lang will do just fine. For example, if one of your methods is invoked with an invalid argument, you could throw IllegalArgumentException, a subclass of RuntimeException in java.lang.

Other times, however, you will want to convey more information about the abnormal condition than a class from java.lang will allow. Usually, the class of the exception object itself indicates the type of abnormal condition that was encountered. For example, if a thrown exception object has class IllegalArgumentException, that indicates someone passed an illegal argument to a method. Sometimes you will want to indicate a method encountered an abnormal condition that isn't represented by a class in the Throwable family of java.lang.

As an example, imagine you are writing a Java program that simulates a customer of a virtual cafe drinking a cup of coffee. Consider the exceptional conditions that might occur while the customer sips. The class hierarchy of exceptions shown in Figure 9-2 represents a few possibilities.

[image: image23.png]

Figure 9-2. Exception hierarchy for coffee sipping.

If the customer discovers, with dismay, that the coffee is cold, your program could throw a TooColdException. On the other hand, if the customer discovers that the coffee is overly hot, your program could throw a TooHotException. These conditions could be exceptions because they are (hopefully) not the normal situation in your cafe. (Exceptional conditions are not necessarily rare, just outside the normal flow of events.) The code for your new exception classes might look like this:

// In Source Packet in file except/ex1/TemperatureException.java

class TemperatureException extends Exception {

}

// In Source Packet in file except/ex1/TooColdException.java

class TooColdException extends TemperatureException {

}

// In Source Packet in file except/ex1/TooHotException.java

class TooHotException extends TemperatureException {

}

This family of classes, the TemperatureException family, declares three new types of exceptions for your program to throw. Note that each exception indicates by its class the kind of abnormal condition that would cause it to be thrown. TemperatureException indicates some kind of problem with temperature. TooColdException indicates something was too cold. TooHotException indicates something was too hot. Note also that TemperatureException extends Exception--not Throwable, Error, or any other class declared in java.lang.

Throwing Exceptions

To throw an exception, you simply use the throw keyword with an object reference, as in:

throw new TooColdException();

The type of the reference must be Throwable or one of its subclasses.

The following code shows how a class that represents the customer, class VirtualPerson, might throw exceptions if the coffee didn't meet the customer's temperature preferences. Note that Java also has a throws keyword in addition to the throw keyword. Only throw can be used to throw an exception. The meaning of throws will be explained later in this chapter.

// In Source Packet in file except/ex1/VirtualPerson.java

class VirtualPerson {

 private static final int tooCold = 65;

 private static final int tooHot = 85;

 public void drinkCoffee(CoffeeCup cup) throws

 TooColdException, TooHotException {

 int temperature = cup.getTemperature();

 if (temperature <= tooCold) {

 throw new TooColdException();

 }

 else if (temperature >= tooHot) {

 throw new TooHotException();

 }

 //...

 }

 //...

}

// In Source Packet in file except/ex1/CoffeeCup.java

class CoffeeCup {

 // 75 degrees Celsius: the best temperature for coffee

 private int temperature = 75;

 public void setTemperature(int val) {

 temperature = val;

 }

 public int getTemperature() {

 return temperature;

 }

 //...

}

Catching Exceptions

To catch an exception in Java, you write a try block with one or more catch clauses. Each catch clause specifies one exception type that it is prepared to handle. The try block places a fence around a bit of code that is under the watchful eye of the associated catchers. If the bit of code delimited by the try block throws an exception, the associated catch clauses will be examined by the Java Virtual Machine. If the virtual machine finds a catch clause that is prepared to handle the thrown exception, the program continues execution starting with the first statement of that catch clause.

As an example, consider a program that requires one argument on the command line, a string that can be parsed into an integer. When you have a String and want an int, you can invoke the parseInt() method of the Integer class. If the string you pass represents an integer, parseInt() will return the value. If the string doesn't represent an integer, parseInt() throws NumberFormatException. Here is how you might parse an int from a command-line argument:

// In Source Packet in file except/ex1/Example1.java

class Example1 {

 public static void main(String[] args) {

 int temperature = 0;

 if (args.length > 0) {

 try {

 temperature = Integer.parseInt(args[0]);

 }

 catch(NumberFormatException e) {

 System.out.println(

 "Must enter integer as first argument.");

 return;

 }

 }

 else {

 System.out.println(

 "Must enter temperature as first argument.");

 return;

 }

 // Create a new coffee cup and set the temperature of

 // its coffee.

 CoffeeCup cup = new CoffeeCup();

 cup.setTemperature(temperature);

 // Create and serve a virtual customer.

 VirtualPerson cust = new VirtualPerson();

 VirtualCafe.serveCustomer(cust, cup);

 }

}

Here, the invocation of parseInt() sits inside a try block. Attached to the try block is a catch clause that catches NumberFormatException:

catch(NumberFormatException e) {

 System.out.println(

 "Must enter integer as first argument.");

 return;

}

The lower case character e is a reference to the thrown (and caught) NumberFormatException object. This reference could have been used inside the catch clause, although in this case it isn't. (Examples of catch clauses that use the reference are shown later in this chapter.)

If the user types "Harumph" as the first argument to the Example1 program, parseInt() will throw a NumberFormatException exception and the catch clause will catch it. The program will print:

Must enter integer as first argument.

Although the above example had only one catch clause, you can have many catch clauses associated with a single try block. Here's an example:

// In Source Packet in file except/ex1/VirtualCafe.java

class VirtualCafe {

 public static void serveCustomer(VirtualPerson cust,

 CoffeeCup cup) {

 try {

 cust.drinkCoffee(cup);

 System.out.println("Coffee is just right.");

 }

 catch (TooColdException e) {

 System.out.println("Coffee is too cold.");

 // Deal with an irate customer...

 }

 catch (TooHotException e) {

 System.out.println("Coffee is too hot.");

 // Deal with an irate customer...

 }

 }

}

If any code inside a try block throws an exception, its catch clauses are examined in their order of appearance in the source file. For example, if the try block in the above example throws an exception, the catch clause for TooColdException will be examined first, then the catch clause for TooHotException. During this examination process, the first catch clause encountered that handles the class of object thrown gets to "catch" the exception. The ordering of catch clause examination matters because it is possible that multiple catch clauses of a try block could handle the same exception.

Catch clauses indicate the type of abnormal condition they handle by the type of exception reference they declare. In the example above, the catch clauses declare exception type TooColdException and TooHotException. Had a single catch clause declared a TemperatureException, a thrown TooColdException or TooHotException would have still been caught, because TemperatureException is their superclass. In the object- oriented way of thinking, a TooColdException is-a TemperatureException, therefore, a catch clause for TemperatureException will also catch a thrown TooColdException. An example of this variety is shown below:

// In Source Packet in file except/ex2/VirtualCafe.java

class VirtualCafe {

 public static void serveCustomer(VirtualPerson cust,

 CoffeeCup cup) {

 try {

 cust.drinkCoffee(cup);

 System.out.println("Coffee is just right.");

 }

 catch (TemperatureException e) {

 // This catches TooColdException, TooHotException,

 // as well as TemperatureException.

 System.out.println("Coffee is too cold or too hot.");

 // Deal with an irate customer...

 }

 }

}

Multiple catch clauses could handle the same exception because you could, for example, declare two catch clauses, one for TooColdException and another for TemperatureException. In this case, however, you must place the catch clause for TooColdException above the one for TemperatureException, or the source file won't compile. If a catch clause for TemperatureException could be declared before a catch clause for TooColdException, the first catch clause would catch all TooColdExceptions, leaving nothing for the second catch clause to do. The second catch clause would never be reached. The general rule is: subclass catch clauses must precede superclass catch clauses. Here's an example of both orders, only one of which compiles:

// In Source Packet in file except/ex3/VirtualCafe.java

class VirtualCafe {

 public static void serveCustomer(VirtualPerson cust,

 CoffeeCup cup) {

 try {

 cust.drinkCoffee(cup);

 System.out.println("Coffee is just right.");

 }

 catch (TemperatureException e) {

 // This catches TooColdException, TooHotException,

 // as well as TemperatureException.

 System.out.println("Coffee is too cold or too hot.");

 // Deal with an irate customer...

 }

 // THIS WON'T COMPILE, BECAUSE THIS CATCH CLAUSE

 // WILL NEVER BE REACHED.

 catch (TooColdException e) {

 System.out.println("Coffee is too cold.");

 }

 }

}

// In Source Packet in file except/ex4/VirtualCafe.java

// This class compiles fine.

class VirtualCafe {

 public static void serveCustomer(VirtualPerson cust,

 CoffeeCup cup) {

 try {

 cust.drinkCoffee(cup);

 System.out.println("Coffee is just right.");

 }

 catch (TooColdException e) {

 System.out.println("Coffee is too cold.");

 // Deal with an irate customer...

 }

 catch (TemperatureException e) {

 // This catches TooHotException as well

 // as TemperatureException.

 System.out.println(

 "There's temperature trouble in this coffee.");

 // Deal with an irate customer...

 }

 }

}

Embedding Information in an Exception Object

When you throw an exception, you are performing a kind of structured "go to" from the place in your program where an abnormal condition was detected to a place where it can be handled. The Java Virtual Machine uses the class of the exception object you throw to decide which catch clause, if any, should be allowed to handle the exception. But an exception doesn't just transfer control from one part of your program to another, it also transmits information. Because the exception is a full-fledged object that you can define yourself, you can embed information about the abnormal condition in the object before you throw it. The catch clause can then get the information by querying the exception object directly.

The Exception class allows you to specify a String detail message that can be retrieved by invoking getMessage() on the exception object. When you define an exception class of your own, you can give client programmers the option of specifying a detail message like this:

// In Source Packet in file except/ex5/UnusualTasteException.java

class UnusualTasteException extends Exception {

 UnusualTasteException() {

 }

 UnusualTasteException(String msg) {

 super(msg);

 }

}

Given the above declaration of UnusualTasteException, client programmers could create an instance in either of two ways:

1. new UnusualTasteException()

2. new UnusualTasteException("This coffee tastes like tea.")

A catch clause can then query the object for a detail string, like this:

// In Source Packet in file except/ex5/VirtualCafe.java

class VirtualCafe {

 public static void serveCustomer(VirtualPerson cust,

 CoffeeCup cup) {

 try {

 cust.drinkCoffee(cup);

 System.out.println("Coffee tastes just right.");

 }

 catch (UnusualTasteException e) {

 System.out.println(

 "Customer is complaining of an unusual taste.");

 String s = e.getMessage();

 if (s != null) {

 System.out.println(s);

 }

 // Deal with an unhappy customer...

 }

 }

}

When you need to embed more information into an exception object than you can represent with a String, you can add data and access methods to your exception class. For example, you could define the temperature exception classes like this:

// In Source Packet in file except/ex6/TemperatureException.java

abstract class TemperatureException extends Exception {

 private int temperature; // in Celsius

 public TemperatureException(int temperature) {

 this.temperature = temperature;

 }

 public int getTemperature() {

 return temperature;

 }

}

// In Source Packet in file except/ex6/TooColdException.java

class TooColdException extends TemperatureException {

 public TooColdException(int temperature) {

 super(temperature);

 }

}

// In Source Packet in file except/ex6/TooHotException.java

class TooHotException extends TemperatureException {

 public TooHotException(int temperature) {

 super(temperature);

 }

}

Note that this version of the TemperatureException family uses constructors in more elaborate ways than you've seen in previous chapters. Constructors are explained in detail in the next chapter. At this point, the important thing to understand is that this design forces client programmers to specify a temperature when they instantiate a TooColdException or TooHotException.

Note also that this version of the TemperatureException family illustrates a case in which an abstract base class makes sense. Because the TemperatureException is abstract, client programmers can't instantiate it. If they want to indicate a temperature problem, they'll have to be more specific than just TemperatureException. They'll have to instantiate either TooColdException or TooHotException. Still, all members of the TemperatureException family inherit the implementation and interface of the base class. A client programmer can invoke getTemperature() on any member of this family. Note that the TemperatureException family also illustrates a situation in which it makes sense to have an abstract class in the middle of an inheritance hierarchy. TemperatureException's superclasses-- Exception, Throwable, and Object--are not abstract.

Given a TemperatureException family as defined above, catch clauses can query the exception object to find out the precise temperature that caused the problem. The temperature field of the exception object must be set when the object is created, as in:

// In Source Packet in file except/ex6/VirtualPerson.java

class VirtualPerson {

 private static final int tooCold = 65;

 private static final int tooHot = 85;

 public void drinkCoffee(CoffeeCup cup) throws

 TooColdException, TooHotException {

 int temperature = cup.getTemperature();

 if (temperature <= tooCold) {

 throw new TooColdException(temperature);

 }

 else if (temperature >= tooHot) {

 throw new TooHotException(temperature);

 }

 //...

 }

 //...

}

Wherever the exception is caught, the catch clause can easily determine the actual temperature of the coffee and act accordingly, as in:

// In Source Packet in file except/ex6/VirtualCafe.java

class VirtualCafe {

 public static void serveCustomer(VirtualPerson cust,

 CoffeeCup cup) {

 try {

 cust.drinkCoffee(cup);

 System.out.println("Coffee is just right.");

 }

 catch (TooColdException e) {

 int temperature = e.getTemperature();

 System.out.println("Coffee temperature is "

 + temperature + " degrees Celsius.");

 if (temperature > 55 && temperature <= 65) {

 System.out.println("Coffee is cooling off.");

 // Add more hot coffee...

 }

 else if (temperature > 0 && temperature <= 55) {

 System.out.println("Coffee is too cold.");

 // Give customer a new cup of coffee with the

 // proper temperature...

 }

 else if (temperature <= 0) {

 System.out.println("Coffee is frozen.");

 // Deal with an irate customer...

 }

 }

 catch (TooHotException e) {

 int temperature = e.getTemperature();

 System.out.println("Coffee temperature is "

 + temperature + " degrees Celsius.");

 if (temperature >= 85 && temperature < 100) {

 System.out.println("Coffee is too hot.");

 // Ask customer to let it cool a few minutes...

 }

 else if (temperature >= 100 && temperature < 2000) {

 System.out.println(

 "Both coffee and customer are steamed.");

 // Deal with an irate customer...

 }

 else if (temperature >= 2000) {

 System.out.println(

 "The coffee is plasma.");

 // Deal with a very irate customer...

 }

 }

 }

}

The program could deal with the temperature problem differently depending upon the coffee's actual temperature. If the coffee is just a little cold, the program could add more hot coffee to the cup. If the coffee is so cold that the customer's lips were instantly frozen to the cup, alternative measures could be taken.

Exceptions and the Method Invocation Stack

Code inside a try block is in a sense surrounded by the catch clauses associated with the try block. When an exception is thrown, the surrounding catch clauses are examined in inside-out order. You can nest try blocks inside try blocks, in effect building up more and more layers of catch clauses that surround the code. When a method is invoked from within a try block, the catch clauses associated with that try block surround the code in the invoked method as well. If that method has try blocks and catch clauses, they are added as inner surrounding layers. What this means is that an exception may be thrown far up the method invocation stack before landing in a catch clause that can handle it.

As an example, consider the following exception classes, which are simpler versions of exceptions introduced in examples above:

// In Source Packet in file except/ex7/TemperatureException.java

class TemperatureException extends Exception {

}

// In Source Packet in file except/ex7/TooColdException.java

class TooColdException extends TemperatureException {

}

// In Source Packet in file except/ex7/TooHotException.java

class TooHotException extends TemperatureException {

}

// In Source Packet in file except/ex7/UnusualTasteException.java

class UnusualTasteException extends Exception {

}

When the drinkCoffee() method of class VirtualPerson is invoked, it throws one of these four exceptions, chosen at random:

// In Source Packet in file except/ex7/VirtualPerson.java

class VirtualPerson {

 public void drinkCoffee(CoffeeCup cup) throws TooColdException,

 TemperatureException, UnusualTasteException {

 try {

 int i = (int) (Math.random() * 4.0);

 switch (i) {

 case 0:

 throw new TooHotException();

 case 1:

 throw new TooColdException();

 case 2:

 throw new UnusualTasteException();

 default:

 throw new TemperatureException();

 }

 }

 catch (TooHotException e) {

 System.out.println("This coffee is too hot.");

 // Customer will wait until it cools to an

 // acceptable temperature.

 }

 }

 //...

}

If variable i in the drinkCoffee()method above happens to be set to a value of zero, the switch statement will instantiate and throw a TooHotException. Because the switch statement itself is enclosed within a try block that has a catch clause for TooHotException, execution continues at that catch clause. The program prints out:

This coffee is too hot.

If variable i in the drinkCoffee()method above happens to be set to the value of one, the switch statement will instantiate and throw a TooColdException. When this exception is thrown, the Java Virtual Machine will first check the catch clauses of the try block that surrounds the switch statement. In this case, however, no catch clause matches the thrown exception.

Because the TooColdException is not caught by the drinkCoffee() method, the Java Virtual Machine throws the exception up the method invocation stack to the method that invoked drinkCoffee(). As used here, a method invocation stack (or call stack) is a list of the methods that have been invoked by a thread, starting with the first method the thread invoked and ending with the current method. A method invocation stack shows the path of method invocations a thread took to arrive at the current method.

A graphical representation of the method invocation stack for drinkCoffee() is shown in Figure 9-3. In this figure, the method invocation stack is shown on the right and the corresponding Java Stack is shown on the left. The Java Stack is where methods keep their state inside the Java Virtual Machine. Each method gets a stack frame (or frame), which is pushed onto the stack when the method is invoked and popped from the stack when the method completes. The frame is an area in memory that contains the method's local variables, parameters, return value, and other information needed by the Java Virtual Machine to execute the method. (The full details of stack frames are described in Chapter 21.) In Figure 9-3, as in all graphical depictions of the Java Stack in this book, the stack is shown growing downwards. The top of the stack is at the bottom of the picture.

[image: image24.png]The Java Stack The Methad Invocation Stack

e Example7.main()

for
main)

- VirtualCafe. serveCustomer()
atne

for
lserveCustomer()
current | eV
frame VirtualPerson. drinkCoffec()

frame
the ‘tap” i f“’ff N current
of the stack Coffee) method

Figure 9-3. The method invocation stack for drinkCoffee().

When a method completes by executing a return statement, or by successfully executing the last statement in a method declared as void, it is said to complete normally. The Java Virtual Machine pops the returning method's stack frame, and continues executing just after the method invocation in the calling method. The calling method becomes the current method and its stack frame becomes the current frame.

When a method throws an exception that it doesn't catch itself, it is said to complete abruptly. Methods do not return a value when they complete abruptly, though they do pass along an exception object.

For example, when the drinkCoffee() method throws a TooColdException, it completes abruptly. Because the exception isn't caught by drinkCoffee(), the Java Virtual Machine pops drinkCoffee()'s stack frame. It then examines the next method up the invocation stack, in this case the serveCustomer() method of VirtualCafe, to see if it has a catch clause prepared to handle the exception.

Here's the code for VirtualCafe:

// In Source Packet in file except/ex7/VirtualCafe.java

class VirtualCafe {

 public static void serveCustomer(VirtualPerson cust,

 CoffeeCup cup)throws TemperatureException,

 UnusualTasteException {

 try {

 cust.drinkCoffee(cup);

 }

 catch (TooColdException e) {

 System.out.println("This coffee is too cold.");

 // Add more hot coffee...

 }

 }

}

The serveCustomer() method above does indeed surround its invocation of drinkCoffee() with a try block that has an attached catch clause for TooColdException. So the exception stops here. The Java Virtual Machine makes the serveCustomer() method's stack frame current and continues execution at the first statement inside the catch clause. The program prints out:

This coffee is too cold.

If variable i in the drinkCoffee()method above happens to be set to the value of two, the switch statement will instantiate and throw an UnusualTasteException. When this exception is thrown, the Java Virtual Machine will first check the catch clauses of the try block that surrounds the switch statement. In this case, no catch clause matches the thrown exception. The virtual machine will then pop drinkCoffee()'s stack frame and examine the serveCustomer() method. But in serveCustomer(), no catch clause attached to the try block matches the thrown exception either. The virtual machine will therefore pop serveCustomer()'s stack frame and examine the next method up the invocation stack: the main() method of class Example7.

Here's the code for Example7:

// In Source Packet in file except/ex7/Example7.java

class Example7 {

 public static void main(String[] args)

 throws TemperatureException {

 // Create a new coffee cup.

 CoffeeCup cup = new CoffeeCup();

 // Create and serve a virtual customer.

 try {

 VirtualPerson cust = new VirtualPerson();

 VirtualCafe.serveCustomer(cust, cup);

 }

 catch (UnusualTasteException e) {

 System.out.println("This coffee has an unusual taste.");

 }

 }

}

This main() method was farsighted enough to surround its invocation of serveCustomer() with a try block that includes a catch clause for UnusualTasteException. Thus, the Java Virtual Machine will make the main() method's stack frame current and will continue execution at the first statement in the catch clause. The program will print:

This coffee has an unusual taste.

In the UnusualTasteException case, both drinkCoffee() and serveCoffee() methods completed abruptly. The Java Virtual Machine popped two frames from the Java stack, stopping its popping only when it reached the main() method.

The last case in this example occurs if the variable i in the drinkCoffee()method gets set to a value greater than two. In this case, the switch statement will instantiate and throw a TemperatureException. When this exception is thrown, the Java Virtual Machine will go through its usual procedure of examining methods for catch clauses and popping frames for methods that can't handle the exception. The virtual machine will examine drinkCoffee(), pop its frame, examine serveCustomer(), pop its frame, examine main(), and pop its frame. At this point, however, the virtual machine has run out of frames. It can't go any further up the method invocation stack because main() was the first method invoked by the thread.

Because none of the methods on the invocation stack is prepared to handle the TemperatureException, the exception is "uncaught." It will be handled by a default handler and result in the death of the thread. Because this thread is the main one of the Example7 application, and the application didn't fire off any other threads that are still running when the main thread dies, the application terminates. (A dead thread doesn't always cause the death of its application, only when a dying thread is the last "non-daemon" thread running inside the application. The details of threads are described in Chapter 17.) In most Java runtime environments, the default handler for an uncaught exception will print out a stack trace when a thread dies. For example, the java program from JDK 1.1.1 prints the following when the main thread of Example7 dies because of an uncaught TemperatureException:

TemperatureException

 at VirtualPerson.drinkCoffee(VirtualPerson.java:20)

 at VirtualCafe.serveCustomer(VirtualCafe.java:9)

 at Example7.main(Example7.java:12)

The throws Clause

As you may have guessed from the examples above, the Java language requires that a method declare in a throws clause the exceptions that it may throw. A method's throws clause indicates to client programmers what exceptions they may have to deal with when they invoke the method.

For example, the drinkCoffee() method of class VirtualPerson, shown below, declares three exceptions in its throws clause: TooColdException, TemperatureException, and UnusualTasteException. These are the three exceptions that the method throws but doesn't catch. The method may also throw TooHotException, but this exception doesn't appear in the throws clause because drinkCoffee() catches and handles it internally. Only exceptions that will cause a method to complete abruptly should appear in its throws clause.

// In Source Packet in file except/ex7/VirtualPerson.java

class VirtualPerson {

 public void drinkCoffee(CoffeeCup cup) throws TooColdException,

 TemperatureException, UnusualTasteException {

 try {

 int i = (int) (Math.random() * 4.0);

 switch (i) {

 case 0:

 throw new TooHotException();

 case 1:

 throw new TooColdException();

 case 2:

 throw new UnusualTasteException();

 default:

 throw new TemperatureException();

 }

 }

 catch (TooHotException e) {

 System.out.println("This coffee is too hot.");

 // Customer will wait until it cools to an

 // acceptable temperature.

 }

 }

 //...

}

In the drinkCoffee() method above, each exception declared in the throws clause is explicitly thrown by the method via a throw statement. This is one of two ways a method can complete abruptly. The other way is by invoking another method that completes abruptly.

An example of this is VirtualCafe's serveCustomer() method, shown below, that invokes VirtualPerson's drinkCoffee() method. The serveCustomer() method contains no throw statements, but it does declare two exceptions in its throws clause: TemperatureException and UnusualTasteException. These are two of three exceptions that may be thrown by drinkCoffee(), which serveCustomer() invokes. The third exception, TooColdException, doesn't appear in the throws clause because serveCustomer() catches and handles it internally. Only those exceptions that will cause the serveCustomer() method to complete abruptly appear in its throws clause.

// In Source Packet in file except/ex7/VirtualCafe.java

class VirtualCafe {

 public static void serveCustomer(VirtualPerson cust,

 CoffeeCup cup)throws TemperatureException,

 UnusualTasteException {

 try {

 cust.drinkCoffee(cup);

 }

 catch (TooColdException e) {

 System.out.println("This coffee is too cold.");

 // Add more hot coffee...

 }

 }

}

Although a throws clause lists exceptions that may cause a method to complete abruptly, the list is not necessarily complete. Not everything that can be thrown by a method need be put in a throws clause.

There are two kinds of exceptions in Java, checked and unchecked, and only checked exceptions need appear in throws clauses. Whether or not an exception is "checked" is determined by its position in the hierarchy of throwable classes. Figure 9-4 shows that some parts of the Throwable family tree contain checked exceptions while other parts contain unchecked exceptions. To create a new checked exception, you simply extend another checked exception. All throwables that are subclasses of Exception, but not subclasses of RuntimeException, are checked exceptions.

[image: image25.png]> Anunchecked throwable
@D A checked exception

anp subclass

Figure 9-4. Checked and unchecked throwables.

The conceptual difference between checked and unchecked exceptions is that checked exceptions signal abnormal conditions that you want client programmers to deal with. For instance, because the drinkCoffee() method allocates memory with the new operator, it could potentially complete abruptly by throwing an OutOfMemoryError. This is not a checked exception, because it's not a subclass of Exception. It's a subclass of Error. Conceptually, OutOfMemoryError isn't a checked exception because you don't want client programmers to have to deal directly with the fact that drinkCoffee() could complete abruptly because of low memory.

When you place an exception in a throws clause, it forces client programmers who invoke your method to deal with the exception, either by catching it or declaring it in their own throws clause. If they don't, their classes won't compile. For example, because the drinkCoffee() method declares three exceptions in its throws clause, the serveCustomer() method, which invokes drinkCoffee(), has to deal with those three exceptions. In this case, serveCustomer()catches one exception, TooColdException, but not the other two. If serveCustomer() hadn't declared in its throws clause the other two exceptions, TemperatureException and UnusualTasteException, the VirtualCafe class would not have compiled.

The general rule is: any checked exceptions that may be thrown in a method must either be caught or declared in the method's throws clause. Checked exceptions are called "checked" because both the Java compiler and the Java Virtual Machine check to make sure this rule is obeyed.

Most unchecked throwables declared in java.lang (subclasses of Error and RuntimeException) are problems that would be detected by the Java Virtual Machine. Errors usually signal abnormal conditions that you wouldn't want a program to handle. Problems with linking, such as NoClassDefFoundError, or memory, such as StackOverflowError, could happen just about anywhere in a program. In the rare cases in which they happen, it is usually reasonable that the thread terminate.

Although most runtime exceptions (members of the RuntimeException family) are also thrown by the Java Virtual Machine itself, they are usually more an indication of software bugs. Problems with arrays, such as ArrayIndexOutOfBoundsException, or passed parameters, such as IllegalArgumentException, could also happen just about anywhere in a program. When exceptions like these are thrown, you'll want to fix the bugs that caused them to be thrown. You won't, however, want to force client programmers to wrap every invocation of a method that uses arrays with a catch clause for ArrayIndexOutOfBoundsException.

You can throw and catch unchecked exceptions just like checked exceptions; however, the Java Language Specification advises against throwing errors. It is intended that errors be thrown only by the Java runtime. You may, however, reasonably throw runtime exceptions. You can throw a runtime exception declared in java.lang, or declare your own subclasses of RuntimeException.

To decide whether to throw a checked exception or an unchecked runtime exception, you must look at the abnormal condition you are signaling. If you are throwing an exception to indicate an improper use of your class, you are signaling a software bug. The class of exception you throw should probably descend from RuntimeException, which will make it unchecked. Otherwise, if you are throwing an exception to indicate not a software bug, but an abnormal condition that client programmers should deal with every time they use your method, your exception should be checked.

The finally Clause

Once a Java Virtual Machine has begun to execute a block of code--the statements between two matching curly braces--it can exit that block in any of several ways. It could, for example, simply execute past the closing curly brace. It could encounter a break, continue, or return statement that causes it to jump out of the block from somewhere in the middle. Or, if an exception is thrown that isn't caught inside the block, it could exit the block while searching for a catch clause.

Given that a block can be exited in many ways, it is important to be able to ensure that something happens upon exiting a block, no matter how the block is exited. For example, if you open a file in a method, you may want to ensure the file gets closed no matter how the method completes. In Java, you express such a desire with a finally clause.

To use a finally clause, you simply:

· enclose in a try block the code that has multiple exit points, and

· put in a finally clause the code that must get executed when the try block is exited.

Here's an example:

try {

 // Block of code with multiple exit points

}

finally {

 // Block of code that must always be executed when the try block

 // is exited, no matter how the try block is exited

}

At least one clause, either catch or finally, must be associated with each try block. If you have both catch clauses and a finally clause with the same try block, you must put the finally clause after all the catch clauses, as in:

// In Source Packet in file except/ex8/VirtualPerson.java

class VirtualPerson {

 public void drinkCoffee(CoffeeCup cup) {

 try {

 int i = (int) (Math.random() * 4.0);

 switch (i) {

 case 0:

 throw new TooHotException();

 case 1:

 throw new TooColdException();

 case 2:

 throw new UnusualTasteException();

 default:

 System.out.println("This coffee is great!");

 }

 }

 catch (TooHotException e) {

 System.out.println("This coffee is too hot.");

 }

 catch (TooColdException e) {

 System.out.println("This coffee is too cold.");

 }

 catch (UnusualTasteException e) {

 System.out.println("This coffee is too strong.");

 }

 finally {

 System.out.println("Can I please have another cup?");

 }

 }

 //...

}

If during execution of the code within a try block, an exception is thrown that is handled by a catch clause associated with the try block, the finally clause will be executed after the catch clause. For example, if a TooColdException exception is thrown during execution of the try block above, the program would print the following:

This coffee is too cold.

Can I please have another cup?

If an exception is thrown that is not handled by a catch clause associated with the try block, the finally clause is still executed. The Java Virtual Machine will execute the code of the finally clause before it continues searching elsewhere for an appropriate catch clause. There is no way to leave a try block without executing the code of its finally clause.

You can do anything inside a finally clause that you can do elsewhere, including executing break, continue, or return statements, or throwing exceptions. Such actions inside a finally clause, however, can have some surprising effects. For example, consider a finally clause that is entered because of an uncaught exception. If the finally clause executes a return, the method would complete normally via the return, not abruptly by throwing the exception. The exception would have in effect been handled by the finally clause instead of a catch clause.

As another example, consider a finally clause that is entered because a "return true;" statement was executed inside the try block. If the finally clause executes a "return false;" statement, the method will return false. For more detailed information about why finally clauses behave as they do, see Chapter 25.

The Meaning of "Abnormal Condition"

As described above, if your method can encounter an abnormal condition that you feel the caller of your method should deal with, you should throw a checked exception. This will force any client programmer to deal with the abnormal condition, either by catching it or declaring it in a throws clause. Deciding whether or not a condition is "abnormal," however, is a subjective process. The general rule of thumb is: avoid using exceptions to indicate conditions that can reasonably be expected as part of the normal functioning of the method.

As an illustration, consider the FileInputStream and DataInputStream classes from the java.io package. An application that uses FileInputStream to print the text of a file to the standard output is shown below:

// In Source Packet in file except/ex9/Example9a.java

import java.io.*;

class Example9a {

 public static void main(String[] args)

 throws IOException {

 if (args.length == 0) {

 System.out.println("Must give filename as first arg.");

 return;

 }

 FileInputStream in;

 try {

 in = new FileInputStream(args[0]);

 }

 catch (FileNotFoundException e) {

 System.out.println("Can't find file: " + args[0]);

 return;

 }

 int ch;

 while ((ch = in.read()) != -1) {

 System.out.print((char) ch);

 }

 System.out.println();

 in.close();

 }

}

This example shows that the read() method of FileInputStream reports an "end of file has been reached" condition not by throwing an exception, but by returning a special value: -1. In this method, reaching end of file is considered a normal part of using the method. It is not considered an "abnormal" condition. The normal way to read bytes is to keep on reading them until you hit the end.

The DataInputStream class, on the other hand, takes a different approach when reporting end of file:

// In Source Packet in file except/ex9b/Example9b.java

import java.io.*;

class Example9b {

 public static void main(String[] args)

 throws IOException {

 if (args.length == 0) {

 System.out.println("Must give filename as first arg.");

 return;

 }

 FileInputStream fin;

 try {

 fin = new FileInputStream(args[0]);

 }

 catch (FileNotFoundException e) {

 System.out.println("Can't find file: " + args[0]);

 return;

 }

 DataInputStream din = new DataInputStream(fin);

 try {

 int i;

 for (;;) {

 i = din.readInt();

 System.out.println(i);

 }

 }

 catch (EOFException e) {

 }

 fin.close();

 }

}

Each time the readInt() method of DataInputStream is invoked it reads four bytes from the stream and interprets them as an int. When readInt() encounters end of file, it throws EOFException. There are two reasons that throwing an exception is a reasonable approach for this method. First, readInt() can't return a special value to indicate end of file, because all possible return values are valid ints. (It can't return -1 on end of file, for example, because it may read a -1 from the stream and need to return it as a valid int value.) Second, if readInt() encounters end of file after reading only one, two, or three bytes, that probably qualifies as an "abnormal condition." The method is supposed to read four bytes, but only one to three are available. Given that this exception is an integral part of using this class, it is a checked exception (a subclass of Exception). Client programmers are forced to deal with it.

A third approach to signaling an "end has been reached" condition is illustrated by the StringTokenizer and Stack classes in the following example:

// In Source Packet in file except/ex9b/Example9c.java

// This program prints the white-space separated tokens of an

// ASCII file in reverse order of their appearance in the file.

import java.io.*;

import java.util.*;

class Example9c {

 public static void main(String[] args)

 throws IOException {

 if (args.length == 0) {

 System.out.println("Must give filename as first arg.");

 return;

 }

 FileInputStream in = null;

 try {

 in = new FileInputStream(args[0]);

 }

 catch (FileNotFoundException e) {

 System.out.println("Can't find file: " + args[0]);

 return;

 }

 // Read file into a StringBuffer

 StringBuffer buf = new StringBuffer();

 try {

 int ch;

 while ((ch = in.read()) != -1) {

 buf.append((char) ch);

 }

 }

 finally {

 in.close();

 }

 // Separate StringBuffer into tokens and

 // push each token into a Stack

 StringTokenizer tok = new StringTokenizer(buf.toString());

 Stack stack = new Stack();

 while (tok.hasMoreTokens()) {

 stack.push(tok.nextToken());

 }

 // Print out tokens in reverse order.

 while (!stack.empty()) {

 System.out.println((String) stack.pop());

 }

 }

}

This example reads in the bytes of a file, converts them to chars, and places the chars into a StringBuffer. It then uses a StringTokenizer to extract one white-space separated token (a String) at a time and push it onto a Stack. It then pops all tokens from the Stack and prints them out one per line. Because Stack implements a LIFO (Last In First Out) stack, the tokens are printed in reverse order from their appearance in the file.

Both the StringTokenizer and the Stack must signal an "end has been reached" condition. The StringTokenizer constructor takes as a parameter the source String to tokenize. Each invocation of nextToken() returns a String that represents the next token of the source String. Eventually, all the tokens in the source String will be consumed and StringTokenizer must somehow indicate that the end of tokens has been reached. In this case, there is a special return value, null, that could have been used to indicate the end of tokens. But the designer of this class took a different approach. A separate method, hasMoreTokens(), returns a boolean value indicating whether or not the end of tokens has been reached. You must invoke hasMoreTokens() each time you invoke nextToken().

This approach shows that the designer did not consider reaching the end of tokens an abnormal condition. It is a normal way to use the class. If you don't check hasMoreTokens() and go ahead and call nextToken() after the end has been reached, however, you will be rewarded with the NoSuchElementException. Although this exception is thrown on an end of tokens condition, it is an unchecked exception (a subclass of RuntimeException). It is thrown more to indicate a software bug--that you are not using the class correctly--than to indicate the end of tokens condition.

Similarly, the Stack class has a method, empty(), that returns a boolean to indicate that the last object has been popped from the stack. You must invoke empty() each time you invoke pop(). If you neglect to invoke empty()and invoke pop() on an empty stack, you get an EmptyStackException. Although this exception is thrown when an "end of objects on the stack" condition is encountered, it is another unchecked runtime exception. It is intended to be more an indication of a software bug (the improper use of the Stack class) than the normal way to detect an empty stack.

[MAY WANT TO MENTION ABILITY TO RETHROW AN EXCEPTION FROM WITHIN THE CATCH CLAUSE]

MAY ALSO WANT TO MENTION THAT EXCEPTIONS USUALLY HAVE LONG, DESCRIPTIVE NAMES AND OFTEN HAVE NOTHING ELSE INSIDE OF THEM.]

OVERRIDDEN METHODS CAN ONLY THROW EXCEPTIONS DECLARED IN THE THROWS CLAUSE OF THE SUPERCLASS'S IMPLEMENTATION OF THE METHOD OR SUBCLASSES OF THOSE EXCEPTIONS.

Extras

Except in the case of anonymous inner classes, an instance initializer may throw checked exceptions only if the checked exceptions are explicitly declared in the throws clause of every constructor in the class. Instance initializers in anonymous inner classes, on the other hand, can throw any exception.

